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PORI:WORD

This report lescribes research effort of the Systems

Research Laboratory to develop analytical models of defense

processes, principally the combat process. Part of the re-

search was sponsored by the Directorate, Weapon Systems Analv-

sis, (DWSA) Office of the Assistant Vice Chief of Staff, U.S.

Army, under Contract No. DAHCI5-68-C-0314 and other parts by

the Office of Naval Research (ONR) under Contract No. N0014-

67-A-0181-0012. iecause of the intimate relationship between

the research supported by these organizations, the results

-• are-combined in one document but issued under separate covers

appropriate to the sponsoring agency. The report for the Office

of Naval Research is entitled "Development of Analytic Models

for Defense Plannings" Report Number SRL 2147 TR 70-2 (U).

The report is comprised of a number of parts. Part A pre-

sents an overview of the differential models of combat developed

in the research program and a summary of results for the reader

who- is interested in lea'rning of the modeling approach without

involvement in mathematical details. Parts B through F contain

the mathematical developments. Part B presents the concepts,

development details, and resultant models for the "attrition

rate"--the principal element of the differential combat models.

Parts C and D describe solution procedures and analysis results

for homogeneous-force and heterogeneous-force battle models,

respectively. The results of a small effort to "analytically
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model reconnaissance activities are described in Part E. P.t

F presents research results for misc•lPaijous areas which are

tangentially relatcld T-6-the main thread of research or, due to

limited effort, only state the research approach.

The research program described in this report concerned

only the development of generalized mathematical differential

models of combat, rather than detailed models of specific

combat situations. The)Ie general models have been applied

to specific combat sitvuations which had also been modeled by

i Ionte-Car!n simulation methods. Comparisons between the differ-

c.ntial models and a Monte-Carlo one showed that their predic-

tions of combat results were essentially the same. This com- ..

parison activity was p'irformed by Vp.ctor Research, Incorporated

under contract DAHClS-70-C-:0-5!-with the Directoraite Weapon

Systems Analysis, after-completion of the research reported

herein. A short summary of theýehd•compari'son'resuilts has been

included in this report• as an appendix to-Part A. o tdemonstrate

that the differential models of comba•t, although abstrract in

form, can be usefully, employedin defense ,pla'nning a•ctivities.

Except for the Summary, Part A, each part of the zeport is

comprised of chapters which are lielf-contained inh so far as

equation numbers, figures, etc. An attempt has been' made to

utilize consistent notation throughout the chapters using ,the

definitions given in the list of ýsymbols. Exceptions to fthis\'

are either noted or seif-evident, in context of the, p••icular
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development. Frequent references are made to developments and

equations among the various chapters and parts of the report

.• to reduce redundancy of exposition. These references are made

by the notation [capital letter, arabic numeral], where the

capital letter identifies the part and the arabic numeral,

the chapter and section within the part.

The contents of this report represent the current views

of the Systems Research Laboratory, Department of Industrial

"Engineering, The University of Michigan, and should not be

considered as having official DWSA, Department of the Army,

ONR, or Department of the Navy approval either expressed-or

implied until reviewed and evaluated by those.agencies and

subsequently endorsed.

We would like to acknowledge the contributi6ns Tof Miss

Maryr Schnell, Mrs. Barbara MacAdam, Mrs., Pat Zangara, •id Mrs.
Bonnie Wood, who patiently typed and proofread ýhetýx' f!the

report.

S .... . _

!~

I .

t, .



vii

CONTENTS

Page

Symbols .. . . . . . . . . .. . .. . . . ...........O* **. x -

Part A - Overview and Summary of the ResearchI Program ...................................... 1

Chapter 1 Introduction ....................... 3

Chapter 2 An Analytic Structure of Combat ....... 11

Chapter 3 Attrition Coefficient Prediction
Methods ................................ 18

3.1 The Attrition Rate ............... 18

3.2 The Allocation Factor ............ 26

3.3 The Intelligence Factor .......... 28

Chapter 4 Combat Model Solution Procedures
and Results ............................ 30

4.1 Homogeneous-Force Results ........ 31

4.2 Five-Support Engagement Re-
sults ............... .. f...... .... 47

4.3 Heterogeneous-Force Results ...... 49

Chapter 5 Related Research Results and Future
Needs ................................. 52

5.1 Preliminary Modeling of Surveil-
lance Patrols .................... 52

5.2 Stochastic Duels with Reliability
and Mobility ..................... 56

I

5.3 Future Research ......... ....... 58

Appendix A Test of the General Model ............. 65

i



viii

CONTENTS
(continued)

Part B - Attirition-Rate Prediction Methods ............... 77

Chapter I Introduction .......................... 81

Chapter 2 Impact-Lethality Systems
Repeated Single-Shot, Burst, and
Mixed-Mode Fire Doctrine ................. 92

Chapter 3 Impact-Lethality Systems, Repeated
Single-Shot Fire Doctrine, Transform
Approach ................................. 121

Chapter 4 Semi-Markov Analysis ..................... 136

Chapter 5 Area-Lethality Systems !............141

Part C - Homogeneous-Force Differential Models.: .......... 163

Chapter 1 Constant Attrition-Rate Model ............ 167

Chapter 2 Variable Attrition Rates, Constant
Ratio Model ... 175

Chapter 3 The Effect of Maneuver:
Constant-Ratio Attri~tion-Rate Func-
tions- 0 to 0 6. e,.o,....92

Chapter 4 Variable Attrition Rates, Analytic .Reiults' " .. .. . . .• .•.•..

Chapter 5 Variable Attrition Pates, Analog
Computer Res its ... ................... 296

Chapter 6 Dynamics of-a Fire Support Attack--
Doctrine ................... . .. ....... 368

Part D - Heterogeneous-Force Differential Models ........ .385

C hapter 1 Constant Attrition-Coefficient
Model .................................... 389



ix

CONTENTS
(continued)

Chapter 2 Allocation Strategies ................... 437

Chapter 3 Numerical Solution Procedure,
Variable-Coefficient Model ............... 479

Part E - Intelligence and Reconnaissance Models ......... 521

Chapter 1 The Intelligence Coefficient ............ 525

Chapter 2 Preliminary Modeling of Surveil-
lance Patrols ........................... 530

Chapter 3 A Multiple Interval Visibility
Model ................ ........................ 551

Part F Miscellaneous Research Areas ................... 569

Chapter 1 Reliability and Mobility in the
Theory of S'tochastic Duels .............. 573

Chapter 2 Some Thoughts on Analysis of
Differential Models of Combat ........... 613

Jý• Chapter 3 Ammunition Requirements Based
on Differential Models of Combat ........ 622

iI

ER :=.?.

, ." . ' . , " " ...



I xi

SYMBULS

This listing contains principal notation used in ýlie rcpxr

Some symbols are used more tnan oncc; however, their meani:,g

should be clear in context of a specific chapter oi part ct the

report. Subscript notation has been cmitted.

English Symbols

A Blue attrition coefficient

A Blue attrition-rate matr-4%

A Total area searched

A Total arta searched by surveillance patrol

a. Area of ith subarea searched

B Red attrition coefticient

B red attrition-rate matrix

bm [bn] firing rate common to all units of the Blue [Red)
forct

C A combined attrition-rate matrix

C Terminal surface in f+
c A constant ratio of the Red to Blue attritict-

rate functiol;e

d The difference m - n

d Distance between subareas (i - 1) and i

d The difference m - to at r 0

Expected value operator

"£ Blue allocation matrix

SEOptiril 
allocation strategy matrix for Blue force

{.



EM(t) [EN(t)l Total ammunition expenditure of a Blue (Red]
unit up to time t in an engagement

F Euclidean (I + J) space -

e Blue allocation factor

Fj Average fraction of time that the J-type weapons
are not advancing

F Corrected ap-proximate expected fraction of damage
to an area carget in j volleys

fA (t) [fB(t)] Probability density function of the time between
A's "B9s] rounds

T Expected.fractic.' of damage to an area target in v
V v o1 veleS

Approximate expected fraction of damage to anf v area target in v volleys

g(t) Probability density function for Td

SH Red allocation matrix

Ff. "Optimal allocation strategy matrix for Red

H1 Prubability that a hit after a hit destroys the
H target

SHM Pr'bability that a hit after a.miss destroys the
NM target

SHI Probability that a hit on the first round destroys• [ ~the target "

•, I h Red ailocation factor

Blue intelligence eactor

Maximum number of Blue force groups

j Maximum number -if R~d force groups

j Jordan normal form of 3 matrix

4 K Red intelligence factor
1...

:1g
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K Conditional probability of destroying the target,
given it is hit by a projectile

.. K K Slope of Blue [Red] linear attrition-rate functions
60

LA LB] Lifetime of A's [B's] firepower subsystem

L* [L•] Time A (B] detects his faillure

I Number of target, postures

.(T) Probability density function for d

M Initial number• of Blue forces

Probability that a miss after a hit destroys the
target

Probability that a miss after a miss destroys the
target

Ms Number of surviving Blue unito at the split rangein the fire-support engagemenrr

M Probability that a miss on the first round-de-I -S thearget

- - Rb of units ii the Blue fire-support force

4M(t) Aenewal function

a i; •Number of Blue I-group losses in time increment AT

a Number of Blue furoes as a function of time or
rang*

-I Number of units in the Blue n.ovi ng forces in the
f re-support engagement

11 Initial number of Red forces

N Number of rounds fired to destroy d target -.

ANJ Number of Red J-group losses in time Increvenlt AT'.

Number of Red foreos as a function of time o6, range

n .Number. of subareas searched by surveillance patrol

-mber of rousnds fired to get the first hit

f n2  Number of rounds to get 1( - 1) additional hits

. -.
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P Conditional probabiliry of destroying the target 11
given it is hit by a projectile

SPLQ Probability of acquiring a live target and termina-
Lrting attention to that target before it is de-

stroyed

P(x) Payoff when the battle terriinates at x on C

p Rehitting probability-.

p Conditional probability of a hit given the preceding
round fired missed the target

p Expected number of rounds required to destroy a
target (ECK])

p Percent force split in the fi-re supcwt enjagament

PA PB]- A's [6's] single-shotill probability

PD. Probability of firing on a de" target

Pi Probability of 4"%a, tig a ta A.n itW. subatwa

PIL ~ Pvobabillit, of firiali an a -Iv* tarpt

Pv Probabill't thtt the taftet- and observer u-e inter-
Visible

PV Probability of firi.ng in a void area

p(t) Probability a Wu fird at tiae t d•ts the
target

P1  First round h~t pobi#tU

TQO Q Ttal asswn_~ z IV~~ top e 12*e tb4i

forco

%~(qJ Initial ammuniti-ot' e*Wpliee for .aOh
"unit

q* q~ Sufficient auVItt~ 0~pe E. ~~R~z~~
unft

• . ,5.

" " •2I



xv

Ra [R 8 ] Range at which a Blue [Red] weapon system first
achieves a nonzero attrition rate

R e Range at which a weapon system (Blue and Red)
first obtains a nonzero attrition rate (i.e.,Re = Ra = R)

Rp Radius of damage pattern

R s Range at which the Blue force splits in the fire-
support engagement

Rt Radius of target area

Ro Range at which the battle begins

r Range between forces (force separation)

rA(t) [rB(t)] Probability density function of A's [B's] lifetime

S1  Probability of covering the target in one volley

S [s j Distanc,. of the Red [Blue] forces from some commonreference

T Time for a single Blue [Red] system to destroy a
passive Red [Blue] target

T Total time that the target is in the visible state

T Duration of the engagement

T A CT B Time for A CB] to'destroy a passive target,
given he is free from failures

The expected time to fire on a dead target before
beginning search for another target

T•L The expected or average time to fire on a live targetbefore beginning search for another target [same as
EMT))

T Mean time between the commencement of searches whenTLX a live target is acquired and destroyed by the ac-
quiring unit
Mean time between the commencement of searches when

live target is acquired but not killed by the ac-
quiring unit

A
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T The expected time to fire on a void area before
V beginning search for a target

t Time variable

t Time since the beginning of-battle

U Value of the payoff when optimal strategies are
employed

u Conditional probability of a hit given the

preceding round fired hit the target

UA [uB] Probability A's [B's) rourd fails

V Speed of the main force

v Relative speed between the Blue and Red forces
V - v

v Conditional probability of a hit following a miss
but preceding the first hit

v Speed of the surveillance patrol which advances
to search area A

v Speed of movement between subareas in surveillance

activity

v n v mJ Speed of Red [Blue),.force

x Damage pattern center of impact in the x direction

y Damage pattern center of impact in the y direction

z Number of hits required to destroy the target

Greek Symbols

Blue attrition rate

Probability A fails on round k + 1

Value of the Blue attrition rate at r C

i• Cr) Blue attrition-rate function

(0) Value of the Blue attrition rate at t 0
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0 Red attrition rate

8. Probability B fails on round j + 1

so Value of the Red attrition rate at r = 0

1 8(r) Red attrition-rate function

8(0) Value of the Red attrition rate at t = 0
I yat Probability one round is fired in (t, t + At)

A Probability of destroying the target given a coverage

(t) Probability that a target i' visible at t

i 2 (t) Probability that a target is not visible at t
P The ratio m/n

IP The ratio m/n at r = 0

Ta Time to acquire targets

j Tb Average time between rounds during the btrst firing
mode

Td Time required to detect a target when it is con-
tinuously visible to the sensor

I Td Time to detect a target, given it is detected

Tf Projectile flight time

I Th Time to fire a round given the preceding round- was----!a hit

Th Time to.fire the first round in the burst process
- after obtaining the first hit in the single-shot

process

T Time to fire a round given the preceding round
was e miss

T sTime spent in the subarea if a target is not
detected

Tv Time that the target remains visible

T 1 Time to fire the first round



xviii

0(t) Approximate expected fraction..of darage to an area
target in v volleys at time t

C(t) Corrected approximate expected fraction of damage
to an area target in v volleys at time t

W relative acceleration between the Blue and Red
forces
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Chapter 1

INTRODUCTION

Seth Bonder

The importance of employing quantitative approaches to

B military planning activities is well recognized. Central

to many of these activities, and of particular importance
- to weapon system planning studies (selection, tactical doctrine,

fet.), is the ;!equirement for methods to predict the effective-

ness of combat units equipped with different mixes of weapon

systems. lt is further incumbent that the effectiveness esti-

mating methods be related to decision variables under control

-,qf -the military planner in a way such that the effect of their

vivaýftion Jmy 1e readily observed. 2

Th- development of methods to measure or predict effective-

notes$ o coib4t units, and identification of the variables which

significantly cn.ttibute to combat effectiveness, has been limited

for a nrumber of reas6ofi'z By definitions measures of a combat

U. imit$' effectiveness should •rleot the degree to which the unit
t aooomplishs. its mission. Additionally, it is well known that

mission aefomp15s*a•ern. ihighly dependent upon the complex

see MOhdar (1970) Hitch and McKean (1960), and Enre (1967).i v aoi•Wables are often times refereed to as con ceptual

.:functions, e.g.,, firepowr, maneuver, intelligence, ate.
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interaction of weapon system characteristic:, threat variables,

organization structuresv tactics employed, and environmental

conditions, One approach used has been to develop simple "in-

dications" of combat effectiveness such as the "firepower

score$," "indices of combat effectiveness," and "single-shot

kill probabilities." These indicators (a) do not measure ac-

complihment of unit missions, (b) essentially ignore most of

the above factors which eff-ct mission accomplishment, and

(c) bear little relation to the physical combat process.

A •ecund, and most heavily used, approach to predict effec-

tiveness of combat units is that of Monte Carlo simulation.

This approach is essentially one of modeling the combat situa-

tion in minute detail, explicitly including weapons system cap-

abilities, threat, environment, and other factors which effect

mission accomplishment. An example of the detail included is

shown in Figure 1, which depicts a one-on-one duel, the basic

combat activity in large-scale Monte Carlo simulations of

ground combat. Random numbers are drawn to determine the time

Por each weapon to fire its first round. Focusing on the Blue

weapon system, additional random numbers are drawn to determine

ti. flight time of the first round to the target, if the first

round hit the targets, and if the round destroyed the target.

This prccess is simultaneously accomplished for the Red weapon

system. if Blue has not destroyed Red with his first round, and

This i. usually treated as a range-dependent cons tuit and
need not be sampled by Monte Carlo methods.
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if he 's alive himself, this process is repeated for Blue's

second round, Red's second round, Blue'G third round$ and so

0on. The process is continued until one of the duelists is

killed or the duel is terminated based on engagement rules

built into the simulation.

These activities, and others, of every system are recorded

-during the course of the battle and eventually analyzed. Solu-

tion of such models is essentially an experiment in which the

process is sampled and replicated a large number of times. The 1
literature reflects the existence of a large number of Monte

Carlo simulations used to analyze defense planning problems

(Adams, 1961; Roberts, 1963; Quade, 1964; USACDC, 1960; Bishop

and Clark, 1969).

Although Monte Carlo simulations are heavily employed in

military planning circles, some meaningful drawbacks e7-ist

in their use as effectiveness assessment tools. Immediately

evident is the loss in generality, since a nsw simulation must

be developed for each class of weapon system or level of organi-

zation examined. Associated with a simulation is the large

expenditure of time and financial resources for the development

I and utilization of the model. It would not be unreasonable to

expect to spend 10 to 16 man-years In just developinig a siuula-

tion of combat such as Carmonette (Adams, 1961) or Dyntacs

(Bishop and Clark, 1969). Additionally, 'lt would no, pe unira-

sonable tc expect each replication of the eimulation to require
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I 10 to 20 minutes of computer time, and anywhere from 10

to 60 replications for statistical stability of the results.

Thi large number of variables usually included in simulations

SI makes it extremely difficult to run parametric studies with the

model to perform sensitivity analysis over the simulation assump-

If tions and input data. This is due to both the statistical

experimental design problems and money constraints which prohibit

the large number of replications needed to determine the distri-

1, bution of outcomes. Finally, and perhaps most importantly, the

large amount of detail contained in the simulation makes it

I $difficult to use as a tool for analysis, i.e., single out those

£ I independent variables which 3ignificantly contribute to the

combat effectiveness.

i: In contrast to the Monte Carlo aimu.ation approach, a

limited amount of effort has been devoted to developing and

using analytic (mathematical) models to predict the effective-

wnes of combat units. In -this approach the physical coy bat

or other military situation is studied and decomposed into

its basic elements, mathematical descriptions of these elements

are d1evloped, and these element descriptions are integrated

in an assumed overall math•matical structure of the proces.

Sdyn"mis. solutions avi obtained by :consistent mathematica&l
il •Mal p /m t. •lt Y-w-t ýgi% shp bten indepednt

Mie 'itbthe' moumtte simialation required 2.mrae

vq} atie./ (Mam, 19810 p. 3S).I of*inwt~tiaeto ~austa~. m1.nte f bttlein ti~4!

_____ ___ - 4 44 - .4444



variables and the dependent ones of combat effectiveness.

This approach has a number of obvious advantages both in its

own right and as a powerfol. supplement to Monte Cerlo sinmula-

tions. Time and iinancial resources for development and utili-

zation are usually markedly reduced. In analytic formulations,

the relationship between independent factors of the process

and the process output is usually explicitly presented, facili-

tating both sensitivity analysis and determination of those

independent variables which significantly contribute to combat

effectiveness. Finally, analytic structures are usually more

general, thus facilitating more generalized use of the m6dels

across different combat organization levels and weapon systems.

Although analytic formulations appear to have a numberof

obvious advantages as military planning tools, lnly ali)mited

number of them have been developed or employed as planning.

procedures. The most prominent of these are the Lanchester

theories and the theory of stochastic duels, both of. which are

well documented in the literature "(Dolansk, 1964; Ancker,'1957).

The structure of initial TAnchester theories is given in

[C, 1.0) ahd a summary of the stochastic duel literature is

contained in [F, 1.11. A brief summary of problems associated

with their use as planning toois i* given below.

The Lanchester theories of combat provide the means

of describing combat between organizations comprised of numbers

of heterogeneous weapons systems; however, general solutions
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for the heterogeneous-force case do not exict. Excluding the

appzrent contz'adi•tion of results from verification studies

(Engel, 1S,64; Willard, 1962), a number of other important

-deficiencies currently exist which-preclude their use as plan-

ning tools. No-means are available for predicting the attri

*on ooeffioden~t--a principal effectiveness input to the

theamyw.Z-as a function of the capabilities of the weapon systems.

The apbi ity of weapon _system (an i.po.tant aspect of the4 r

S•tactical oes) is not explicitly considered, nor is tAe faet

. that the attritioe coofficiAshts ,Vf-wn either or. both

-. _ use use, wma ~;on i.e.! variations in

Se separation affct has %k pwetpou_*Is acquisition, fire.

iLK ~ PW-r an prteotectionoru~ti:&

•." •Pi ffring tI:mesh probahil4t•es, ad~lpoaii~,•
ft .t.•elthi v Mprah has been only patially successful.ftat. A agg3Sai thereIa been atpon sytom cosidoe. Stochasie tic

Si • t t•istine of ve&pons *systms. the duelv 4nore some

I 'Sp@ t P!k!a• jjý #ra nd pl- rother' "a trittive ":a Lc"
e#~ he ~mcta~...Ap3lcafetiom~o thPo stoche tic .

t~ iilipl 4vslpAn, WO~' isporan ly, lag.mal a h;1 I I Iv

-4401 wedw inVuig" x's trictive. Lips at o"1 rl~dil
- . * - ...... -, -. . . ... ........ . . .w * •he L'-a-i. ,. .'

S iI , .,-: :: ..• :-• •:: . : " .: .... '. :.v : .. •; ::-"i.i :i ••i.ii: .- .: • ... . : , :. : i" :: :::,. .

I ,...•,.:.••.= .." . •...:.=-.:-o ...,. •.... ,.: ".:.:._.• .. .•.• .. .• . . . '• •.i'j: ..7.:.. , , . .,.,.. .:. . " .• - .;: "i / ." ". . .- ....'""... :•• - • :,

1"/ :- ::•" . . " . ': •• : , . .: •' : . ' .. .. " - " -: - • ' . . : " - '
•"• .•= .:" • . . .:. .",• . ' . . ,- , -,.':: • • : " . . .• • '. " .



approach, the stochast4.c duel descriptions virtually omit the

effect of mobility on the outcome of engagements and the fact

that the weapon parameters are time dependent when either or

both combatants employ tactical mobility.

In summary, methods are needed to predict the effectivs-

ness of combat units equipped with mixes of weapotn systems.

There is a heavy reliance on Monte Carlo simulations of com-

bat for this ptn.prce; however, there exists a number of signi-

ficant deficieocies in their develcrment and sole utilization

as planning 1'ols. Although analytic approaches appear to have

some obvioui. advantages in their cwn right and as supplements to

Monte Carl", simulations, deficiencies in the existing Lanchester

and stoc)ý&Astic duel theories are sufficient to limit their use

as plannz.ng tools.

T. objective of the research program described herein

13 t, nevelop analytic ropresentations of combat-an3 other

militarl activities that can be used efficiently and effective-

-' -or planning purposes. Per discussions with staff of the

rirectorate, Weapon Systems Analysis, the research focused on

rattalion task force units and combat missioni. Thei remainder,

of this part of the report presents an overview ofthe approach

taken, a qualitative summary of the eesultsobtAined, and a

brief description of additional research requirements. Parts

t rh-ough I' of the report contain the quantitative results,

ietailed mathematical developments, and solution pr•cedures.



Chapto., ;

AN ANALYTIC STRUCTURE OF COMBAT

Seth Bonder and Robert Farrell

In a broad sense the primary objective of our research

is the development of analytic structures that can be used to

predict the results of an artificial history of combat.

Essentially, this would be a trajectory or trace of time,

geometry, casualties, and resources expended for both forces. 1

Measures of combat effectiveness such as the ratio of sur-

viving forces at the objective, time to overrun the objective,

and the amount of terrain controlled are then determined from

thesi results of battle.

1*ea0ly, there exists some functional relationship be-

tween the results of battle end the initial numbers fiforces,

types and capabilities of the weapons systems, the doctrine

of employment, and the environment. Thus, we' would like to

specify the function f shown below.

/ Numbcivs of Forces
Results Tyrtf of vcapon Systime

of f Weapon CapAbilitic.3)tile Doctrine of Employment
|ttlo(t&atizs , organization)

Environment

-It is important to, recognize that ohat is. being:, developed
is a descriptivetheory of 0ombat activities': and, not 'a
normative one which. spec ifi force structur'e,
although some o;tiniatio uth h a be xmned'•



Unfortunately% it is not known how to hypothesize such a

function directly, nor is there sufficient data to develop

it empirically. Because of this, we attempt to appro:dmate

what happens in a small period of time during. the battle.

That is, for each side, it is hypotheasized •that in a short

period of time

(a) locations change due to tactical mOvement,

(b) weapon systems' art attrited ýby se :ct

(c) resources are expended, and

(d) personnel beeclue casualties due to fise atiIt

Focusing on the loss of weapon systems and-'perso nvel',q

it is assumed that, if the state of the battle at ~thi b4ginning

of the small 1.nterval is known, and the activity that tJ et

place during the inte'rval Is knbawh the rat* at which *V&joons

systems and personnel a*e att•ited during this .ia.l...ti.va.

r'n be predicted. it is because of tAis rate focus: that:the

mathematical. strunture employed to model the combat activity

is that of differential equations.

For convenience, names are assigned to 1,tho numbersof

different groups of systems in each force. Let

Rqserve comm.itment and resuoplydtwing the "vnmfl inte..... of.
time -are also possible but are omitted for preshtati6i pbrpI6es.
Thi essentially is the concept of measurable attr~x&ie
formulated by F. W. Lanchester (1916).
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a the nunber of surviving Blue units of the 1 th

A gI" Qroup (U = l,2,...).

fnj a the number of surviving Red units o-f the j

Different groups are determined by their ability to attr.it

11 veortssysts of ~oppsinggroup.. Therefore, ,ds2

wncon systAmm a-d rapid-fire machine guna-s form different

grpoupe- since the- rate at which tbw 04Matrttrp;-o

an opposing group are ditflAVbt *fit0nlr similar

-at ftey are

atCfmt unss tthe tcee 0 f riUae dill n'nce

tI,4 UW~ EU tiWtW~~ M A~tw'mthan anbotr

Sfl .. l ., -.. ~-Rw.

3 " ot-f units in the it) , -a pgroup due
tp t~ I fue ,gup i proportional to the Anumber

- 1 i. a the I legopwihapootonality

of .tor *34 Si the 1: Bluesttr. with A. .•ff,,

total iLS th s4M Of the SOW Of I*""e due To

tbt

U ,tk
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Mathematically, these assumptions take the form-of the following

192ecnupled sets of differential equations:

dn.dn. - A. i(r)mi for j Om,2, ,J [32

dmi
- B..(r)n for i. 162,...,I , [23

iul.

where

Aij(r) 3 the utilized per system effectiveness of

systems in the ith Bluo group against the

Red target at range r. This is called
the Blue, attrition coefficient.

B,.(r) a the utilized per system effectiveness of
3.1 thsystems in the j Red group against the

ith Blue target at range r. Thisi is called
the Red attrition coefficient.

Although the var3able r is used to designate the rangCI,
between the firing weapon group and the target group,
it should he noted that, in application of the model,
actue]. tume trajector'ies and positions of each group
can, be considered.

2Although ioit explicitly shown, resources expended ar'¢
explic:tl• co-:tanned in the devwlopir'nt of the A

..ee (B, 2,0)1 and can be determined directly
fro,.the •. del, as not•O I'n ET, • . i

Si:

#4
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It is noted that this formulation is a deterministic one

which treats the numbers of surviving forces (mi and n.) as

continuous variables, while clearly the actual bcttle activity
is a random phenomenon and mi and n. are integer-valued vari-

ables. Although many probabilistic arguments are contained in

th.s -formulatio.n (as showin in Parts B through F of this re-,

port), the output of the model is a deterministic trajectory

of the surviving numbers of forces. The reasons for -this

eat.i, instead of a stochastic one of the

same process, are given in [B, 1.0]. It is of interest to

notee that research done on comparing the deterministic and

stochastic formulations for the homogeneous-'force case (only

1 one force group on each side) indicates that the deterministic

f~rmulations. are reasonably good approximations of the ex,

pected number of survivors if there is a small probability

that either side is annihilated. Additionally, in many de-

!A fense stadies that employ lHonte Carlo simulations, typically

,ory the expected results are considered in the decision-

K: making$ process.
p The attrition coefficients (A. an Bj.) are, as one

would expect, complex functiors of the weapon capabilitics,

f target chareteristic•, distribution of the targets, alloca-

tion procedures for assigning weapons to targets, etc. The

muodel attempt- to reflect these complexities by partitionitr
"tile total attrition process into four distinct ones:

t
I.

I
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1. The effectiveness of weapons sytems while firing

on live targets,

2. The allocation procedure of assigning weapons to

targets,

3. The inefficiency of fire when other than live

targets are engaged, and

4. The effect of terrain on limiting the firing

activity and on mobility of the systems.

The latter was not examined in the research program; however,

a amans of incorporating these effects was included in the

comparison of the maodel predictions ,Yith that of a Monte

Carlo simulation model, as described in Appendix A.

The first three effects are included in the attrition

coefficient as

A ij(r ai(r)eij(rIIij(r) [3]

(r) 8 i(r)h (Or)K. (r) , [4]

ji * ji 31

where

a (r)j the attrition rate--the rate at which an
individual system in the i th Blue group

thdestroys live j group Red targets at

range r when it is firing at them,
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I
e.i(r) thg aZlocation factr--the ,ropoztion 3!

the ith Blue group systems azsi±ed to

fire on the jth group Red targets w-iJch

are at range r,

I ij (r) = the intelliaence factor--the proportion•

of the i th group firing Blue weapons

allocated to the j th Red group which are

actually engaging live 3J group Red

targets at range r.

Similar definitions exist for the componerts of the Red

attrition coefficient, Bji.

Major emphasis in the research program-has been on the

development of methods for predicting these \nputs and the

development of solutions of the resultant co led sets of

differential equations, The methods develope to date and

results of the solution procedures are summari d in Chap-

ters 3 and 4 of this part of the report. Chapt , 5 brietly

describes results of related modeling of reconna sance

ac~tivities and an extension of the stochastic duel models

of conmbat. Area. for future "•qiarch Are also nortd in

Chapter 5.

Lit

S .4
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Chapter ?

ATTRITION COEFFICIENT PREDICTION METHODS

Seth Bonder and Robert Farrell

As shown in the previous chapter, the attrition coef-

ficienL is made up of the attrition rate, the allocation

factor, and the intelligence factor. Research has been de-

voted to the development of methods to predict theje inputs

with major emphasis on prediction of the attrition rate.

Detailed descriptions of attrition-rate prediction methods

are given in Part L- of the report. Allocation factor re-

search is described in [D, 2.0] and formulae for predicting

the intelligence factor are developed in CE, 1.01.

3.1 The Attrition Rate

Basic to the differential mnode]. or theory of com1t:,,t

is the at Ltrition rate, which is the rate at which A wcap.3n

sysvm.,, can destroy live targets when it is firing at them.

]I t(', c],sIicci! Lanchester iheories, the attrition rate

h-as ,,'Žrissuumed constant or state-dependent (dependent

G; tL, I,.J-L~hC.s r £ suvi ,ir.g Red and Blue forc.,3). . The

ab:iit'. it ottn, other, ttn t .y hindsight, a satisfactory

v.':t3%•g',t- of the attrition ratc for futurue engagcments has

] 1 .. • wC .:,"(.' of cl::•z.icall Lanch.:! Lc;: thcori.- - for plan:ainj .

"he -oncrept of the attrition rate formulated in this

research pvogram is described irn [B, 1.0). SimpLy, it is
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assumed to be dependent on a multitude of physical param-

"eteis of a weapon system which describe its capabilities in

such areas as acquis,.tions firing accuracy, delivery rate,

and warhead lethality. This dependency gives rise to two

distinct variations in the attrition rate--variation with

range to the target and chance variation at any specific

range. A mathematical structure of heterogeneous-force

combat whirh includes the ran-ge and chance variations ex-

plicitly cannot be analytically solved with existing mathe-

matical techniques. For this reason we hiave suppressed the

explicit chance variation and used average attrition rates.

This leads directly to the combat formulation given by equa-

tions 1 and 2 (see page 14). In this formulation we can con-

sider the rvinge variation of the attrition rate explicitly

and somewhat independently of the chance variation at each

specific range to the target.

Based on some logical and mathematical arguments, it

has been shown that the appropriate average value definition

of the attrition rate to use (for a specific range) with

equations 1 and 2 is

def'. (S
ijj(at range r) =M[5I

FTor clarity of discussion, variations in the attrition rete
"due to changes in target posture, environmental effect, etc.,
which cai, be included in the model, are not presented.



where

E[Tijlr):-the expected time for a -ingle T1ie d

system of the ith group to destroy a
passive group t _Red t , g:.,ven-•the ,

target is at range r.

--- --- -----

This defini.t-on for an average value of the attrition rate

at range r is equivalent to the harmonic mean of the attri--

tion rate when it is viewed as a random variable at range r.

This definition also leads naturally to defining the range

variation of the attrition rate as the variation in the

reciprocal of E[Tij rJ as the-range to the target changes.

The range variation is called the attrition.-'ate fa-not.ion

and is denoted by mij(r), as used in the differintial equa-

tion structure of combat.

Based on the above discussions, research on attrition

rates has been concerned primarily with the development of

time-t•-kilt probability distributions and their expected

values for a spectrum of weapon systems. The distribution

for the time-to-kill random variable is developed by consid-

eration of the number of rounds expended to achieve the kil.

Thus, the amount of ammunition resources expended can be

obtained directly for a specific cabat activity. Ease"-

tially, what is done is to takethe physical process of the

duel (which is basic to Monte Carlo simulation.s) and model
tthe dynamics of this process lmathematically..

I

a:
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To ensure that the attrition rates developed are general,

"a taxonomy of weapons systcms that is not dependent on physical

hardware charaqteristics (such as caliber) ias developed.

Rather, the taxonomy reflects characteristics of weapons sys-

tems that would affect the methods used in predicting the at-

trition rates.

The taxonomy-is shown in Figure 2. Weapon systems are

first classified by their lethality characteristics as having

either impact-to-kill mechanisms or area-lethality effects.

Within each of -these categories, we have found it useful to fur-

ther classify weapon systems on the basis of their methods of

"using firing information to control the system aim point and

" " their delivery characteristics, i.e., the firing doctrine

employed.

Methods have been developed that allow the prediction of

attrition rates for many of the weapon systems shown in the

taxonomy. The first cases analyzed involved single-tube firings

1 -1 in-which launch of a projectile occurred only after the obser-

vation of the effects of the preceding round. These are called
"f"repeated single-shot" doctrines in our schema, and are some-

times called "shoot-look-shoot" doctriesby other analysts,

Analyses have been undertaken c1 two subclasses: -(a) those in

-which no use is made of iormation obtained from obscvations

and (b) those in wvich the observwtions are treated distinctly

'depending on whether they awe a hit or a miss, leading to

:different typte of correction in ai-. oint for these two cases.

I

t
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SI A

LETHALITY &CHANI!SM: [
1 IMPACT

FIRE DocTIS.ME:

*A) WiTmhou FinmucI eomw*X OF A1-3U- fQ

*-) NIT* Flp-V. aMY
ROWS (oAmv fma)

C0 V I ON C41.0 -PUAC K
2, •rF•

"l) WITNOIJT AIM CMUSE OR DRIFT IN OR BTEWUN IUISTS

'V) V1.7 AIM MIfT I* lmoi, AIM W IXRD To 401101L
AIR PoI*T w" "mHWU

t;) Bt• m~m~,l ,Mtn ,thm• AM

$4,4i.0o OR: MWA
11 "INm An. F - " a

A) _ sTwEin P I IV IWLTIPLE-W-FIRE

*1) Aw MT FOLLOW by lomt Fiae

INDICATES THAT ANALYSIS -OF THIS CATE6ORY HAS WUEh PEOR,.MEi,

Figure 2 Weapon-System Clasoification for the Develcp-
mint of Attrition Rates,
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UThis subclass is called "'Markov fire." A c.ompletely general

I flme-to-kill probabilfty distri-buvtion for Mat-kov fire systems

has been developed. Weapon system parameters that are included

explicitly in the distribution are shown in Figure 3. Methods

H of predicting these parameters from basic hardware considera-

• tions are well known.

-i The more complex doctrines involving "multiple-tube

firings" and "burst fire," have been analyzed separately.

ji These are classes of systems for which the projectiles may

be launched before observation of previous round effects.

Burst-fire cases analyzed include those in which rounds are

all identical with respect to accuracy (no drifting or con-

trolleo alteration of the aim point) and those in which the

, 4 rounds within a burst vary, but the bursts are resighted to

the si aim point. All present analyses have been based-on

fixed-length bursts. The complex case in which bursts- are

re-aimed on the basis of observation has not been analyzed.

Preliminary analyses have been conducted of m'etiple tube

firing cases, and it has been determined that the attrition

rate for both volley and salvo fire may be represented by the

same formula*. The method developed considers a weapon eye-

tea which, perhaps not knowing the exact location of targSets,

t, ~ ires. indixl, iAmo an- 4.a it prol~iit$4 that. 4.3ivora

4smagwapp'odurAeng offefte Oovr pArt at the fte.* :Pareatersj included in the aepo"o 4 shown iA FJ4mwe l- Each of these

'ainstics of: b4 4"i~tdfoaasc *. hrt
_ ..itk f ~p . ,u . 4 tg

IL



24

I.

TIME TO ACQUIRE A TARGET

TIME TO FIRE THE FIRST ROUND

TIME TO FIRE A ROUND FOLLOWING A HIT'-

TIME TO FIRE A ROU14D F-OLLOWI-NG A MISS

PROJECTILE FLIGHT TIME.

PROBABILITY OF A HIT ON FIRST ROUND

PROBABILITY OF A HIT ON A ROUND FOLLOWING A HIT

PROBABILITY OF A HIT ON A ROUND FOLLOWING A MISS

PROBABILITY OF DESTROYING A TARGET GIVEN IT- 1$IT KIT

PROBABILITY OF DESTROY"NO A TARGET GIVEN. IT r0• KISSD, -

!;

lA

' if

Fiur,-- 3 Factors Included in Pttritiun Ratie forz

Si•l4e-Shot Markov-rFir* M pot• Syoap "

L [
• .

L:



! WEAPON AIMING AND BALLISTIC ERROR$

i TARGET LOCATION ERRORS

ii

-•WEAPON FIRING RATE

VOLLEY DAMAGE-PATTERN RAIlUS

[ , TAIGET DISTRIBUTION

A TA"T RADIUS

TARGET POSTURE

PRBABILITY THAT THL TARGET. 1-$ DESTROYED GIVEN
IT-IS COVERED) BY DAMAGE PATTERN,

V.I

iI
FiSgure, Factors Conside'ed in Attrition Rate for

Indirect, Area-fire Weapons
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Finally thc mixed mode firing doctrine in which a period

of single-shot fire is followed by burst fire has also been

analyzed.

3.2 The Allooation Factor

As noted earlier, the allocation factor is the pro-

portion of the ih Blue group systems assigned to fire on

jth group Red targets. This is included since only those

systems directing their fire (or other lethal effects) on

the ith group or its area are likely to cause attrition of

the target. The allocation factor may be in'ut by military

judgment reflecting the assignment strategies deemed most

appropriate to the tactical situation. This factor may be

input directly or determined from a priority or target worth

scheme.

Research in this area has focused on the determination

of optimal or good allocation strategies when the battle

dyrasmics are described by the coupled sets of heterogeneous

differential equations shown earlier. The research is de-

scribed in [D, 2.0]. The results obtained are b'.amed on the

following assumptions:

(1) Zero time is rcquired to switch from one target

group to another,

(2) Projectile flight -imes are small, and

(3) The gr'oups have perfect control and intelligence.
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The research has shown that, for linear- payoff functions,1 1• it is ineffective for individual weapon types to distribute

"their fire over different tdrget groups. That is, all i-group

weapons should engage all j-group targets with no splitting of

fire allocation within a group. The optimal assignment stra-

tegies are such that all weapons of a single group should

be assigned to a single group in the opponent's arsenal.

Mathematically,

11 for • • for i =I,2,...,I [6]
.; 0 for j A K

H iifor i L"iihj COo i, for zz -1,2,...,J , [7]

IA
I where K onm L denote a specific weapon type in the Red and

Blue foorg, respectively.

I The "'search has also shown that the choice of group

tý be fired upon, is indepp-ndent of the number of weaponm

"in the firing or. target group. The class to be fired

upon is selected by determining the maximum attritior, rdtes

-On the marginal utilities of the opposil-,g groups and nct

I ":

11
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1
d iltc'tly I y the nuI..i',c,[ of w.'ap.I in thu uppoz..nfl, L1uup:;

FuPr her-mox'C. it,'.cac,. (S.,w- ...u;eir, Ch (Snow,) emplovc

th, ais';u-,|pti,: O tht the were constan,]t

Lhreuig}:out the batLle, it ,.' bc--cn shown that switchi.,'

SUrfac(_,; dz. e-x>ist, i.e. , t:-,e uptiita." alsocation stratc%,,

chaa,,g.s during the bd.2e even though none of the Blue

01' Red force groups a;,e annihalated.

Closed-form analy-tic solutiort, for the optimal alioea-

tion strategics; (initi-Jl al]ocation and switching surfaces)

have been obtaii-Wa for the two-on-oell battle, 3 q?. two

groupzi on one side and one on the other. The mett-d use'd

is applicllc to higher-orde.r battles; howe-Ver, the mathc--

matics gets extremely cumberome.

3.3 The Intallige'oe Factor

As previously noted, the intellgence factor is the'pro-

portion of the ith group firing Bl.ue weapons allocated to

th th
the ith Red group which are actually enga.ing l.•ve h gPou:

Red targets. This factor is ichluded to cr:- r -1he lois-

in efficiency (effectiveness) of • firi-lg weapon when it is

riring on either targets already attits e or on area-i that

This has an otvious implication o.i intelligence re-quirements
during' a battle for allocttion. A2lj that needs to be known
is that there exists a live j-grn.7t' targeta and not the number

1ive weapon systemsti it.

u•a •. | ibL 8L



are void of targets. Research in this area is described in

CE, 1.0] and suggests that the intelligence factor 3hould be

predicted as

l(r) PLTL

PVTV + PD TD + L TL

where

PL = the probability of firint on a live IdtrgCt,

PD = the probability of firinfs on a dead I j,2 t

PV the probability of firinig in a void ad.da,

tL imh exoected or avec'aguc tino to fjhc oni c
L I

i.v'e target,

thc expected or average L4iime to fire o, .

dead target,

S=th expec Led tii&e to frre on a void ar.a.

At the present ';iMe, only the parameter T, T which is equal to

the expecte• tim•e t1 4feat a iive target,' can be predicted

as input. Rcsearch is required tc dev~io- me'hods to esti-

mate the other param1eters.

'That is, •L is equtiAalent to what was pieviously refe'rred

to A ts m exnec'ted t'mo to kill a target, E[(T.. jr].

I
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Chapter 4

C"'MBAT MCL)EL SoUTION PROCEDURES AND RESULTS

Seth Bonder

Ti'ic basic structure assumed to describe the combat
activity w-'s given by the coupled sets o- differential

equat ions

1

F 3 .. 1fodcit L .A 3(r)a• for i l ,2,..,I.
d t ] • i

jIl

The preceding chapter summarized xethods that have been

developed to predict inputs to these equations--the attri-

tion rate, the a!.hcation factor, and the intelligence

factor. This chapter briefly presents results of research

that has been directeJ to obtaining solutions for the above

equations, where a solution is taken to be the trajectory

of s•urviving forces of each type during the battle as a

function of basic inputs and initial numbers of forces.

Ideally, it would be desirable to have the solutions

in simple, closed for'm which would readily portray the rela-

tionship .tween the independent factors of the combat process

and the jurviving numbers of forces. This would facilitate

iLitic,; and locaticýns of suxrvivors can also be determined
ais part of the solution, but are omitted in this discussion.

",I

.!



both sensitivity analysis and determination of those inde-

* pendent variables which significantly contribute to combat

effectiveness. Attempts to obtain such closed-form solutions

have focused on simplified cases of the comb-it equations

ir order to obtain some insight into the solution procedures

and problems related thereto. These simplified cases include

(a) homogeneous-force battles (one group on each side) and

(b) constant-coefficient, heterogeneous-force battles.

A summary of the results of these research efforts are pre-

sented in succeeding sections. Details of the homogereous- and

heterogeneous!force battle solutions are given in Parts C and D,

respectively. A numerical solution procedure was developed to

solve the equations for simplified tactical situations involving

heterogeneous forces and variable attrition coefficients. This

procedure is described in ED, 3.0].

4.1 Homoeneous-Foroe Result8

We considered first the simnlified case of homogeneous-

force battles with unity intelligence coefficients. 1 The general'

heterogeneous equations noted above reduce to

dn(t)
dt

cit!din(t)_

SAU research presented in this report has considered unity
intelligence coefficients.
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Since there is only one group on each side, the allocation T

factor is also equal to unity for each force. In these *qua- J
tions explicit notation showing the time and range dependen-

cies are given.

In order to include explicit consideration of some di-

mensions of mobility, the one-dimensional battlefield coor-

dinate system shown in Figure 5 was considered. The symbolis

s and im, are the distances of the Red (n)-and Blue (m)

forcesrespectively, from some common reference. The above

equations can be converted to the space domain depicted in Fig-

ure 5, resulting in the following differential equations: V

d n + [w 1 dcdo, dn a6 11

2 Lvr2

dy v

d- ým 1w dl d-n aý P-1F

d~r2 + • n :0 (12)

These equations explicitly include maneuver characteristics

of the forces such as speed (v)and acceleration (w) and the

ra'nge variation in attrition rates when the forces employ

mobile weapon systems.

The solution of these equations required knowledge of
. 1

the attrition-rate functions, 1i(r) and $(r) for the Blue and

It waa noted in the preceding chapter that the attrition-rate
function is defined to be the variation with range in the
veclvprocal of the expected time-to-de!trov a target.
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- -- -r -. m

x

where -

"r S (Sm) the distances of the Red'(lue)
Vn (V)vlctyo h h

"forces from soe common reiieences-

i .r force 3eparation,

il • Vn (v) veloci'ty of the Red (.Blue) force.

v -relative velocity between the Blue and

I Red force (v v

F 5e

7 .. Figure 5 One-Dlimensional Battlefield Coordinate System

!
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Red weapons systems, respectively. Examination of datu for

some representative weapons systems suggested a number of

forms for the attrition-rate functions, some of which are

shown in Figure 6. These characteristic shapes were given T"

appropriate mathematical descriptions, e.g., linear, qua-

dratic, exponential, and cosine attrition-rate functions.

In each case the range R is that force separation at which

the weapon first attains a nonzero rate of attriting targets.

Attempts were made to obtain closed-form solutions ror

the homogeneous-force battle equations with these attrition-

rate functions under the assepption that the acceleration Df

forces was zero (w = 0), i.e., a constant-speed battle. For

example,-assumptions of linear attwltion-rate functions for

both Red and Blue weapons are shown in Figure 7(a). Here

R and R are the ranges at which the Blue and Red weapons

systems, respectively, first achieve nonzero attrition rates.

The resultant equations could not be olved in closed form

without further assuming a constant ratio of Red to Blue

attrition-rate functions. This last assumption for linear

attrition-rate functions is shown in Figure 7(b). A general

r "!eed-form solution was developed for any pair of attri-

tion-rate functions such that 8(r)/a(r) constant.

Even with these ,overlv gimplified, restrictive assump-

tions, sulutions to the variable-coefficient &if ferential

.quation,, gave rise to some interesting insights and
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comparisons with existing theories. In particular, the

classical constant-coefficient Lanchester formulation of this

problem suggests that a Blue force will lose a battle when

2 2Cim< ON2

where M and N are the initial numbers of Blue and Red forces,

respectively. This lose condition implies complete annihila-

tion of the losing force.

Analysis of the variable-coefficient solutions, however,

indicates that this win-or-lose condition is completely mis-

leading. Rather, one should consider some measures of effec-

tiveness (numbere of survivors, differnce of aurvivors,

ratio cf survivors, etc.) at the end of the battle instead-

of the complete annihilation conditions. Thus, one may

croose to consider any or all of the above measures of effec-

tiveness when the force separation is zero (the attacker

crosses over the defended line) or some prespecified break-

point in terms of survivors and/or force separation. When
this is done, then the results of the battle ar highly de-

pendent on the assault speed and the rel4tionship between

the initial, Linvar, and quadratie conditions defined below;

initial Ccndition:

H [ N

:I
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Linear Condition:

0 0

Quadratio Condition:

2

0 >

where a and o are the attrition rates for Blue and Red
0 0

weapons, respectively, when their force separation is zero.

The effect of these conditions and the use of mobility as

measured by the assault speed are shown in Figures 8 through

11.i The figures show the effect of the assault speed on the

difference and ratio of survi.ving forces at the end of ti o

battle.

The conditions shown in Figures 8 and 9 suggest, by

classical Lanchestex analysis, that the Blue force will be

annihilated. This is true if their assault speed is less

than 4 mph. However, increasing their assault speed to

approximately 20 mph will result in their arriving at the

defended poaition with a superiority of 14 units (where the

initial superiority was 20) or a ratio of 2.9 to 1, where

the initial ratio was 3 to 1. These figures are suggestive

of two phenomena:

1. Attacking with sufficient speed is a means of con-

serving one's own force, i.e., get the enemy before
he gets you. This we might term a saturation

principle in that we saturate the enemy's retalia-

tory firepower capability with maneuver.

Ii
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2. irlcr'2asing the assault speed increases the satuca-

tion effect; however, this effect has a decreasing

margindl benef it.

The decreasing marginal utility of increasing assault speed

is evidenced in both Figures 8 and 9; however, it is more

pronounced in Lhe ratio measure of effectiveness.

In contrast the these results, the conditions of Fig-

ures 10 and 11 suggest, by classical Lanchester analys.:.s,

that the Blue force will annihilate the Red force. This will

occur only if the Blue force assault speed is less than

13 mph. Increasing their assault speed above this will re-

sult in their a.rriving at the objective with a lower super-

iority, measured by the difference and ratio of forces. It

is inter sting to note that when the measure of effectiveness

is the force difference at the objective, there is a unique

worst speed for the Blue force to attack; however, the ratio

of surviving forces continues to decrease with increasing

assault speed.

Although closed-form solutions to the homogeneous-force

combat equations when the ratio 0(r)/a(r) is not constant

have not been 'Nbtained to date, rescarch ef fo.QL have t-e,

directed to obtaining parity conditions (conaitions Leading

to equal numbers of tiurvivors on both sides at the end of the

battle). Based on the work described above, we felt that

I.
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these conditions would depend not only on the force sizes

but also on the shape of the attrition-raTe functions, the

effective ranges, the oange dt which the battle is initiated,

and the mobility of the attacking force.

Approximate solutions to the parity conditions have

been obtained analytically (see [C, 4]); however, they have

not provided a great deal of insight to date. Analog com-

puter solutions to the equations, however, have tended to

support the above conjectures. The analog computer provides

a visual display of the solution space when patimeters such

as initial number of forces, assault speed, effective range

of the weapons, opening range of the battle, etc., are varied.

Systematic variations of these parameters were made to ob-

serve the trajectory of the parity conditions (m n at

range r z 0). These are described in [C, 5).

Some typical plots of tne solutions are shown in Fig-

urea 12, 13, and 14 for the absolute number of survivors,

the difference in survivors, and the ratio of survivors, re-

S•spectively, at the end of the battle. The parity points for

variations in the initial numbers of the Red force are indi-

cated by solid circles. --.. .. a, obvious from these fie-

ures is the fact that the assault speee is an integral factor

in predicting parity pcints. More importantly, there appear

to be optimal assault speeds such that deviations from these

optima can have significant effects on the battle results.

The principal factors in the classical Lanchester parity
conditions.
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A
3. at r Rs, a percentage p of the remaining Blue

force (Ms) continues to advance at speed v with-
S

out fiiing. The -emdining (I - p)M Blue units

stop and provide supporting fire on the Red force.

4. Red fires only on the moving Blue units.

The attrition-,rate functions which result from this situa-

tion are shown in Figure lb. The Red force attrition rate

varies with range since Red units engage closing Blue units.

The Blue attrition rate is a constant, as = kC(Ra - Rs

since the supporting fire Blue units remain a fixed distance,

R, 8from the Red units. Solutions to the. reaultanL differ-

ential equations have been obtained and some analysis of

optimal tactics (assault speed, percent force split, etc.)

. conducted. This work is described in [C, 6].

4.3 Reteogeneoe-Toz, oe Rteek it

A long-range obiective of the research pmegram is to

obtain usable analytic solutions to tne set& of veriabl*-

coefficient differential equation.- uveY to dUsribe combat

among heeroge force* These are equations 1 oand 2 in

Captew 2 The pt'e4cing sections disa.1rsechtCh .2. ,, .d, .* *~ , to,: .. +

obtain solutiou n fr sivolifie•d forms of thesOe equation* for

bam~ne&&e wo".e'i Aua fiwe-eUpprt situatio w~ch, retained
J he omplexityof theVarl"1 attvtilon-ato fuuitions

Ieseambh has. b.a .... .ted Onanother fo-t.ofs.J..ifi.atio.

4t~

; W I +_ _ _ _ 4$+• '+
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in which we retain the generality of heterogeneoois forces,

but consider the attrition-rate functions to be independent

of range for all weapons in the battle.

Previous research efforts in this area (Snow, 1948) de-

veloped solutions for this situation under the assumption

that each Blue group distributes its fire over all Red groups

and each Red group distributes its fire over all Blue groups.

That is, the allocation factors ei. > 0 and h.i > 0 for all

i and j. This assumption appears to be highly ,.;irealistic in

that it requires ineffective weapons to fire at targets they

cannot destroy (a rifle firing on aui armored tank) and an

over-allocation of firepower (a long-range missile firing at

an infantryman).

A general solution to the heterogeneous-force, constant

attrition-coefficient battle model for any allocation poli'.y

has been developed. The solution methods are simplified,

and thus more useful for analysis purposes, when the optimAl

zero-one allocation stratesy is employed.

variable-coefficient battle models o06iJ not be developed.

A numerical procedure was developed to solve the. equations

for skimplified tactical situations in which the het4erogeneous

combat groups m have different locations and where the vari-,

ation in at trition coefficitents W! th range is explicitly,

LL
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'onsidered for each group. This procedure, which is de-

scribed in [D, 3.0], was developed primarily for use as a

research tool.

I 2

I
I



Chaprer 5

RELATED RESEARCH RESULTS AND FUTURE NEEDS

Seth Bonder

The research described in this report is viewed as the

beginnings of research activity to develop analytical models

of relevant military processes that can efficiently and ef-

fectively be used in analysis of both small and large-scale

military activities. This long-range objective will require

the development of analytic structures for each of the rele-

vant military processes (such as combat, reconnaissance.

logistics, etc.) and research on methods of combining them into

an integrated set of analytic procedures.

Modeling emphasis to date has been directed to the de-

velopmnent of differential models of the combat process and

associated allocation strategies. This chapter summarizes

some related modeling results developed under the cited con-

tracts and lists a few areas deemed important for future

research1.

S.I Preli '•vwry Modeling of Survelltanoe Patrots

Except for the intelligence factor included in the com-

bAt model structure, the dfferential models of the combat

activity essentially 5,; .je the intelligence-gathering or

r'econnaissance process that could reasonably have a large

effect on ccwbat effectiveness predictions, especially when



one consijers its izuteraction with .-he allczitioT ..;tr tt-.'v.

It was thought that many of tht: exi-ti.,g t r .k
naissance theories would be useful for predlicting -In anco,-'mt

of intelligence-gatheri.ng capabil.ity pc3se~s;ed by a lacticai

unit. A thorough literature search i0i thi , arca, h•.vev.",

indicated that existing theories are l.. thdri u.;E:Iu_

thi3 purpose (Moore, 1970). Most of the re-sead.Ah eflworts

have been devoted to a development of strate"Zies for trn,. up-

timal allocation of aearch effort and little to the devI..p-

ment of descriptive models of intelliZence--_gatherinz, processes

nor its interaction with the combdt activity, i.e., "sub-

sequent action." The existing results do not consi, er im-

portant aspects such as intermittent target ,isibil.ty, mul-

tiple targets, moving target,-, and others. Accordi:.gly, a

small part of the research effort was devoted to thi dev•i•,p-

ment of preliminary models of the intelligence-gaý:ht ring

process, specifically surveillance patrols.

The surveillance Situatior modeled is shown in Figure 17,

where
v- speed or movement between subareas

A z total area searched.,

ai. z area of i. suharea search-td,

di z distance between subareas 1i - 1) •d

n number of subareas seatrched.
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Surveillance
Unit

"A V

82aa

Figure 17 Surveillance Patrol

Search in successive areas A may be (.onsidered continuous

rearch associated with a mobile force situation. Search in

just one area A might be consitered a periodic area surveil-

lance to obtain general information during a st,'tic situation.

The models were developed on the assumption that the our-

veillance unit moves into a subarea and, as a unit, scans the

area as a single sensor. The patrol leaves a subarea and goes
L I

A ,

! • . .
.•
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to another at the time it detects the target's presence or

after a specified time during which it has not detected a target.

A number of models of the surveillance activity noted

above were developed, each differing in assumptions regarding

the stochastic nature of the visibility process (existence of

line-of-sight). Mathematical expressions were developed for

(a) the probability of detecting a target in a subarea,

(b) the probability density function (pdf) for the time

to detect a target in a subarea, given it is de-

tected,

(c) the pdf of the time spent in a subarea,

(d) the pdf of the t.ime uniil the first detection,

(e) the probaoility of detect -g a target during the

patrol,

(f) the paf of the number of targets detected, and

(g) th- pof of che tiue spent searching the total area.

"These expressions explicitly include the target's location,

effects of the sensor capabilities, mobility of the sensors,

and the line-of-sg.ght disturbances of the terrain. The mathe-

12 atical developments- ae dfcribed in [E, 2].

falelfOffaf .ft Was also directed to the development of

ge01"6l mtbn %" rnLa3 tw~tuses to describe the visibility

* L (E~ne..t*~*# .p'e~es. Th 401 vouvbed Consider~s

-wt~gle 41 -. Iatr&t*.ItA*M1L bettim the sensor and

tile -to Awe~gae ~ae

~%U4

r -~-4- F

I~i..
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(1) the probability that the target is visible for a

given time t;

(2) the pdf of the length of time that a target will

remain visible, given that it is visible at t;

(3) the pdf for the number of times the target will be
visible in a fixed interval t ;;

(4) the pdf for the total time of visibility in ts;

(5) the pdf for tbe number of visible targets at time t

if there-are N independent targets*&

(6) the probability density function for the number

of sightings in (O,ts) If there are N targets.

This work is described in [E, 33. j

5. Stooasetie DueZs with Retaiabitty and Mobility

The development of the differential rtoels o: combat

extended the ewlier Lanohester formlatico. to include

Mobility of both foroes, niorosoopic dwta3lr of the weapon

systems in lthe attritioan "afijiciont, ant the fact that the ! !

attrition ooeffivients vary bee- forces SnpWo' ouble v.eapon

y4 ty . W Ibs"approach wae takes a -based n te i•.d " . -

it vm4 ~be, bales difficult at +Utd 4ins~ew~~ h

stocatL Ad*.l -ba'g 'wbi Osf a ady a1 der" 'o

. 41Ueli:l ad s.- 8 taasimly 404i1 "Oblity Or thol V ý , -.. .
A seNALIll ef~ort however, We 4"*ted tQ o ~ ~ t

ah-One. sti at~c -6A1 VUs~ia o 1W~~~bl
A'-

-- ' +
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of the duelist's weapons and initial elements -O mobility.

This research is described in [F, 1).

Previous work in stochastic duel theory included some

natural limitations of weapon systems in duels involving

limited ammunition supplies and time limits. Another natural

limitation of a weapon is the reliability of its firepower.

The denigration of a weapon may be due to factors such as

severe natural environment, lack of preventive maintenance,

and the use of the weapon when fired. The first two factors

concern the study of reliability and maintenance per se,

while the third factor is more complex, since more than the

temporary loss of firepower is at stake in combat.

Models were developed to describe catastrophic failures

of firepower, leaving the duelist entirely helpless or foroing

him to withdraw from the duel. Reliability is treated both

as a function of time and as a function of the number of rounds

fired, the latter as a more realistic model which relates

* the chance of breakdown to actual use of the system. The

* probability of one side winnin is found for all the duels,

an4 the results ame coapared with those for the *orresponding

"fw ! "f e r al" *toch a tic 4uex. .

A Sip1ified Maodel was developed to. rflef t 44t e ,,effect

ofabityina stooheseIo doel. This mode inoA. ort

Siple-shot kill.1.Xo* hi.ties that var'y with. tia--the time-

! --
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I.

dependence occurring due to the basic dependence o. accuracy L
and lethality on range to the target and the range vari-tion

due to movement of the weapon systems during the duel.

[.3 Putur. Reoearoh

During the course of research effort described in this

report, it has become increasingly clear that research in

other closely relatud &roas will have to be verfovued in

order to develop a reasonably complete spectrum of analytic

models for defense planning. A brief description of some of

these areas is given in this section.

S~1

Reoe0e00M saxos Researo_

"A small-amount of research effort was devoted to the

"developmnt of preliminary sathematical structures of our-

"veillance patroas which include effacts of QhW visibility I

process, sensor detection capabilities, and acklity' of the

soenso system. It is felt that this vo* sholld Continue to

make the models more realistic of the ,e=iOa$* pocess1

to determine optia. search strategies Wh.a p ow .

consideration is given -toitmtet nm .4 b.MU

ditional1*9 research Should be,4zet o~"

intorfaci jig the zonasoeadtA~~ 4

d£totO4m prime~i3~y the coeb~t, actvity st~

A.ee :y rt nd
••' •,•, ." " " . .... . .. • , , . -, , , .•,. - . . .

•_ •;: .. .
•. , .. ,, .. , •: .•':•,•.•..•' ,,
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I
Sbe considered in this area include

(a) What model structures are needed to interface the

reconnaissance activity and subsequent action?

(b) Can the effect of "false alarms" be effectively

"" included in models of the reconnaissance activity

"when subsequent action is considered?

(c) What effect will consideratiun of subsequent action

have on the optimal allocation of search effort?

I

Laa'ge-Soael Unit NodeUtng

Although the long-range objective of the research program

* is to develop models for both the microscopic weapon system

planning problem and the macroscopic one of force structuring,

initial efforts have been devoted to describing the micro-

• •scopic strUctUrO Of combat. Models to predict the attrition

;oeffic.ents a"e being developed from elemtntal character--

" istios of individual weapon systems. These are then used as

Sdis. tint Pameters in the heteroeneous-force model for each
I r~po in the Blue force and eac P oq in the fted force~

Th'T eft *We* in be pwoblef of *I;e in using these module.

for -Mrs o~ .z mt WS.~ d * pxis wl to the large

ý1 -* ~ -duOiW y

0 0. V 
A

0,00 rise %" : 14AL81s +

.. . .. . - • + N ' + b,* -.... O . . .. .. . .

W.:.

S....

•..[ :;.- . • ... . . . . - +• . . . :..•. - V .- . ' . "._ . + . ". . ,"

I) .77 -""" " .G:g:."+..
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1. The direct app e•,.,tion of the heterogeneous differ- *

I erntial equation formulation to large-scale force

structures by reducing the dimensionality of the

model. Methods would have to be developed to aggre-

gate the attrition coefficient for different Weapon

groups to attrition coefficients for taotical units,
which would then be used as input to a large-scale

heterogeneous- force formulation.

2. Develop means of using the output of the microscopic

heterogeneous model (which uses attrition coefficients
for individual weapon groupb) as input to other, per-

• haps differential equation type, boda•s of large-

scale force combat activities.

Close-Combat Reearch.

Tho models currently under development will provide pre-

dictions of four basic dimensions of combat--tims, *pace'

casualties, and resources expanded. UsalLY, m sirs.

of effectiveness such a the ratio of evrviVoWSt 4 . Cf e A-0,-
ence of survivors,, and, the per"ent of suwlLv uIi-- -

€lose to the objective is COmpt ea .A••m .gh g... t*

.f Whether or not the combat .... . .

r' '" . [ ,.How-2ver,, little is. known "40rdiart i 4b sw
th~ese measiurs and sucoosirfal o 1igR t

• .. • . . . . .. . . -•',...-,-- ,.,. ... .--

.f.K •.. ,

S . . .i : " • " "" •4"
.. ~ ~ ~ n a u e of -. , . . ...- ,,;... •..,-....•,."j • ; '.;'-•, ;:: . • " " ;:,2 "•i:- : , !



61

I
SAccordingly, it is felt that research is needed to assess the

t• predictive capability of these measures for different combat

activities.

Approximaiton# to Van'iabla-Coeffioient Formutations

At shown in the solutions to the homogeneous-force models

with variable coefficients, variation in the attrition co-

i efficients during a battle appear to have a significant effect

on the battle results. During some of the applications of

the differeatial-combat model in the Main Battle Tank pro-

gran, however, it was found that in same situations the re-

Ssuits of battle could well have been predieted with a con-

it iL" of ,esMch lnt1ew eat -to • an .- fate Wave-rage"

l-- ttrit.:m. rate over all ranges of- a battle can be determined

-,hr.- when used In a corstaZntm--oefficient fomiuation, would

[ po•ae Simila• results t* t" vwiablo-oefficidt hetero-

A - .. 77ti•v

g.e.e++s..f:s'÷S umisi Th• gffJii 'p+ eo

-7-

W C. '+:_+i

. . -,-. .,-

++ +, +• + + ++••++•+++++ + • •+ +•+ + ++' a ++ " • +..... •i!:+ ;:;•'i'.: ; :+ ++

+.+.•:<+:: . .~
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are developed from the more fundamental distribution of the

number of rounds required to defeat a target. Thus, there

exists a means of determining the amount of ammunition re-

quired to obtain a specific level of combat effectiveness

predicted by the diff-rential combat models. Since the lat-

teo also include the spatial distribution of forces and their

maneuver during engagements, POL requirements can be deter-

mined from the specific capabilities of vehicles employed.

Thus, the models assume an infinite inventory of ammunition

and POL with no constraint on the combat activity. Research

should be directed to developing an explicit logistics model

which alA be integrated with the combat formulations to re-

flect logistics restraints on the combat activity.

• . 1•

The -Ifett of the mobility of Combat t considered
4. 1i

in the differ.ential equation formulAtions, in a rather re-

strictive tense by examining the effect of mobility during the

engasementi. This might more appftpriately be called the of-.

feet of maneuver, with mobility. bWn& reserved for the strate-,

gic aspects of traspotin the ut to he bahttle area.

Clearly, I. * he ,:stftuoiwin of lwge-scale forces, the.planners

must ýtrade off the firepowte* and maneuver capabilitities of

units and :the ability to. transport thea to tea as,

4.... . 4i4

-: ,- _.,, . . . ..

4 4i- " i • . ' . . " " 4..s -: .- " _ . -- 44 .. . . . . . . . . . " 44" " - . . . • - . ..

4:" / • '.. •; .'; -. - : , . , ... ... , .... ". ÷ ,.• .; : 4. 44 ¢ • 4• 4 . . . . . . -4 . ' ' • .. . . "L < . • 44. .



required. It is felt that analytic models of mobility that.

can be interfaced with models of combat between large-ccale

forces are needed.

Command and Control Research

As noted in the earlier discussions of tfle combat m~odel,

the allocation strategies being developed assume not only

perfect intelligence but also perfect command and control.

That is, given one determines optimal allocation strategies,

can the commanc,-control system implement the assignment pol-

icles? Research in this area should be directed to determining

1. how to reflect imperfect command and control in theicombat model formulation, especially in its inter-
action with the allocation policies, and

2. how to predict the amount of comman~d-control capabil-

ity possessed by a tactical or strategic unit.

-The. differential models of combat include an intelligence

factor.as one of the elements in the attrition oc0effitient.

Ths factor is included to act-ount for the loss in efficiency,

f (effectiveness) of &.firing wieapon when it is rkziaig on eitherI.2taiet a ady ottritiod or on area the 0 void of targets..

A Vd 1060loedt pred"ctý the W" diontellio.nca factor'

3:3

[i

.N

Ieurd ti ettataayi oeso oiliyta
caIeitrae ihmdl fcma ewe ag-cl
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(see equation 8, page 29); however, rnethods of estimating

only one of its input parameters--the experted time to fire

on a live target--are available. Research is needed on

methodb to estimate the other parameters of the intelligence

factor model.

N' . '_-

I@
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Appendix A

TEST OF THE GENERAL MODEL

Seth Bonder and Robert Farrell

As noted in the introductory chapter, tthe cbjec:-_ie ol

this research program is the development of an-alyti'., iaoj'?i

fo. defense systems planning. . Chapters 2, 3, and 4 ;uima.-

i&ed the basic structure used to describe the comb-. p.oces:-.

the development of models to predict inputs to the strl.cture.

and research efforts to obtairn analytic solutions to the con,-

bat formulations. Conceptually, one may view all the results

described earlier as hypotheses or theories that need be

verified etgainst actual data, or at least compared to tie

re•Ults. of detailedHcnte Carlo sir,,.atiofls.

Under ,a .separate contract witb the- Directorate, Weapon
Systems Analysis, Office, AssiZt-ant Vice Chief of "tf"± S-.

Arm, ast~dywas conducted -to 'compare the co;~a dc~k~

.ienerated by th. differfnti& :mo$e1 of combaat .o:.thoS• pz',- . .

die•ted by more detailed HonteC.Carlo ..61%u'at'on. mieth s £

Uador tbi tuyth nsalhtrgnu-oc mtdel I h

va-riabl" at Ciln coaffiCiwltv • lietd o .Se -

,hos* prine as e&veod t Me ethods aiesc: ib+d -0 Atgi' I + - / -: : , - " ..
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tactical situations used in the TATAWS-III study, which is

part of taie overall Main Battle Tank (MBT-70) study pro-

gram. ThQ Individual Unit Action (IUA) Monte Carlo simula-

tion of ground combat was used to evaluate candidate main

battle tank systems and force structures of proposed bat-

talion task `orces.

Figlae 18 depicts c'.e of the tactical plans considered

in the 'lair Battl( Tank program to which the differential

model. of combat was applied. The tactical plan shown is a

Blue attack engagement against a fixed Red defensive posi-

tion. The attack is conducted along three major axes with

four individual routes of advance per axis. Each route con-

sists of individual main battle tank candidates and/or sup-

porting armored personnel carriers equipped with rapid-fire

weapon systems. In addition to these maneuver units of

main battle tanks anc personnel carriers, the Blue attack

force had long-range missiles and shoi-t-range missiles,

sr3wn in the figure, The defending force is comprised of

tanks, missiles, and armored personnel carriers equipped

with rapid-fire weapons systems.

The Monte Carlo s...nulation of this engagement considered

the movement, acquisition; and combat activity (duels) of

each and every unit in the battle. Maneuver, in terms of

1 Some of the engagements considered as many as 103 individual
weapon system4.
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attack speed and accelerations, over different portions of U1

the terrain sas considered for each weapon, based on pro-

pocessed terrain analysis. The existence or nonexistence

of line-of-sight between weapons system for each route to i-

all other weapons systems was used as input. Preprograumed 1
target priority tables were used to specify the allobation-

of individual weapons to targets. A replicatiom of tke sin.m

ulation consisted of moving each of the systom dma their

prespecilied paths and evaliating -by Monte Carlo meas the

acquisition and attrition process (the fult 4 dul

event) for- each weapon .systeui.. durifog the co sur bt ". 4A, _

gagement. The engagement was wepUqwteld Q ttot .* ,ftam a level•-of statio, ' " ý.Dtlbfinly
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The attrition coefficients for each group on appropriate

target groups were calculated using the same basic acquisi-

tion, firing time, accuracy, and lethality data used in the

simulation. The coefficic..ts were computed at 250-meter

increments to the target out to a maximum range of 3,000 meters

and stored as attrition-coefficient lookup tables. The al-

location factors (eij and hji) employed were based on the

priority tables used in the simulation. 1 The intelligence

factor was set equal to 1.0 since these effects were not con-

sidered in the simulation.

Mobility and line-of-sight were considered in a determin-

istic manner similar to that employed in the simulation. Av-

erage speeds and lines-of-sight over segments of the routes

were input for each of the aggregated groups. Thus, a group

was moved as d whole, and visibility did or did not exist

to the group as an entity.

It was noted in Chapter 4 of the text that closed-form

solutions to the general heterogeneous-force, variable-coef-

ficient. differential-equation model do not exist. Accord-

bigly, the equations were solved numerically using the pre-

computed attrition epeffici~nts and prespecified allocation

factors which were'tormd as lookup tables.

A separate acquisition model was developed to estimate the
percentage of surviving tZrgets that were detected:and, ac-
cordingly, could be. ailoated fire.
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Using this approach, the model was applied to short-

range defense and long-range attack engagements considered

in the Main Battle Tank study program. Using these engage-

ment types, six separate runs involving different weapon

systems and force structures were made for comparison with

the simulation results. These comparisons are shown in

Tables 1-3.

Table 1 presents a comparison of the results of one of

the short-range-defense enaagements. The initial numbers of

forces and the numbers of survivors at three analysis points

as predicted by both Monte Carlo simulation and the anal-y'ic

model- are given. The analysis points are defifed by the

percentage of Red tank survivors: low equtl to 70 percent,

principal equal to 50 peroent, a high approxi"tely eq%*M -

to 20 percent. The times at which these analysis points are -

reached in each of the models is also given. Two sets of

results at the low analysis point in the analytic uodel .h

shown since there was an appreciable attrition in the 240- I-
250 time interval. L

Table 2 presents the comparisons of tank. survivors at,

the three analysis points for the other or short-wan do-.

fense engagements, and Table 3 presents the cmpaieons of

the tank survivors at the three analysis point, for the

'A
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Table I

I. OMPARISON OF SURVIVING FORCES

* Run Number 7306

Short- Rang Defense

Initial NumbersI1-6 Blue Tanks .A0 Red Tanks
6 Blue Short-,Range Missiles 0 ked Missiles

6 Blue APC 12 Red APC

AM4AYS is TT
VON EAPON S114ULATION~ TIM1E ANALYTIC -TIME

Ulma Tanks 1I9SOM./1.

61lue Lo,-44e .3SZ 2142 6.:~0-C 240U/250- 4
_d ~siletc

43a V issiles 4.S7 go
su,6.73 263 6.10 260

etpal Rkluie fR missiles 2.27 30

10-33 10.33

Ilu)e Tan~ks 0.40 10.0
"RIue OR~ Nisailes 2.97 32729
Biej APC 5.10 26.
Mae- LR Missiles 2..00 2.9
Re~d Tanks 6.90 7.2
Aed Mlssilcs
lekd APC '1 .21 7
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three long-range attack engagements. The Monte Carlo simu-

lation results for runs 7355 were not provided by the govern-

ment for comparison. The larger differences in tank sur-

vivors in runs 7105 and 7106 were attributed to the fact that

the input vulnerability data for the Blue tank on the Red

Missile used in the simulation run was approximately :Ai:•

that used in the analytic model run.



75

REFERENCES

Adams, H.E.; Forrester, R.E.; Kraft, J.F.; and Oosterhout,
B.B., "Carmonette: A Computer-Played Combat Simula-
dion," Technical Memorandum ORO-T-389, Operations
Research Office, Johns Hopkins University, February
1961.

Anker, Jr., C.J., "The Status of Developments in the Theory
of Stochastic Duels," Operations Reeearoh. Vol. 15,
No. 3, 1967, pp. 338-406.

Bishop, A.B., and Clark, G., "The Tank Weapon System," Report
* AR69-2A(U), Systems Research Group, The Ohio State

University, October 1969.

Bonder, S., "Topics in Military Operations Research," Pre-
sented at The University of Michigan Engineering Summer
Conference, -July 1970.

Dolansky, L., "Present State of the Lanchester Theory of
Combat," Operatione Researok, Vol. 12, No-. 2, 1964,
pp. 344-58.

Engel, J.H., "A Verification of Lanchester's Law," Operations
Researoh, Vol. 2, No. 2s 1954, pp. 163-71.

Enke, S. (ed.), Defense Managelmoet, Englewood Cliffs, N.J.:
Prentice-Hall, Inc., 1967.

* Hitch, C.J., and KcKeaný fl.N., The lEonomias of Defense in
the IK Nuotar g Cambridge, Mass.: Harvard University

_ 2 ! ~ess,1967.

"Lannx.hestla-, F.w-ri uiroraft in Warfare: The Dawn of the
- Fourth Armo London: Constable and Company, 1916.

S Mowre $ M.L., "A Review of Search and Reconnaissance Theory
Litterture," Report Number SRL 2147 TR 70-1(U),

Sf,.Systeem Reseorth Laboretory, The University of.-Michigan,
January 1970,

A

i _

i "



76

Quade, E.S., "Analysis for Militdry Decisions," Report pre-
pared for USAF Project RAND, RAND Corporation, Santa
Monica, California, November 1964.

tRoberts, C., "Development of Centaur-A Computerized War
Game," U.S. Army Operations Research Sympoeium Pro-
oeedings, Part 1, Army Research Office, Durham, North
Carolina, March 1963.

Snow, R.N., "Contributions to Lanchester Attrition Theory--
Project RAND," RA-15078, Douglas Aircraft Company,
Santa Monica, California, April 1948.

USA Combat Developments Command, "Development of an Im-
proved Tactical War Game Model EDIVTAG-II]," Firal
Report--Project 67-9, Institute of Combined Arms and
Support Research Office, Fort Leavenworth, Kansas,
January 1969.

Vector Research, Incorporated, -'Test and Application of
New Ground Combat Analysis Methodology," Report Number
VRI-1, FR 70-1(U), Ann Arbor, Michigan, 1970.

Willard, D., "Lanchester As Force in History! An Analysis
of Land Battles of the Years 1618-1905," Report Number
RAC-TP-74, Research Analysis Corporation, McLean,
Virginia, November 1962.



I
I
I
I
I

SI PART B

I ATTRITION-RATE PREDICTION METHODS

I
I

4

I

i

I
I



i

I

The overall structure of the differential model

combat 'as presented in the preceding part of this report.

A basic input to this niodel iL the attrition rate, which is

the rate at wniich a firirig weapon system can destroy live

targets when it is firing at them. This part of the report'

describes methods that have been developed to predict the

attrition rate for a spectrum of weapon systems.

Chapter 1 describes ouz, concept of the attrition rate.

Rationale for employing the differential equation structitre

of combat (given in Part A) with this concept of the attri-

tion rate, and an operational definition of the attiition

rate for us- in this context, ia presatnted. Chapters 2, 3,

and 4 contain descriptions of aiternative deveioDments of

attrition-rate predictior, models for various types of weapon

systems. The attrition-rate models are developed using

different mathematical approaches. Our intent is pedagog-

ical, in that we hope it will acquai. .e user with dI'-

proaches to modify or develop, attriti-on rates for systems

other than those modeled in the research, pro'grant.

I

I
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Chapter I

INTRODUCTION

Seth Bonder and Robert Farrell

1.Y Concept of the Attrition Rate

The attrition rate for individual weapon systems is

assumed to be dependent on a multitude of physical parameters

of a weapon system which describe its capabilities in such

areas as acquisition, firing accuracy, delivery rate, and

warhead lethality. Experience with existing ;ystems suggests

that these characteristics are dependent on the range to a

target and are stochastic in nature. That is, the attrition

rate is functionally dependent on the range between combatants

and, for any specified range, is described by a probability

distribution. In the vernacular of the mathematician, the

attrition rate may be viewed as a nonstationary stochastic

procss when forces employ mobile weapons. This is shown

in Figure 1, which depicts the two distinct variations in the

attrition rate for a single weapon system type against one

target type, (a) the stochastic variation at a specific range,

which is described by the conditional probability distribution

f(alr), and (b) the variation in some function of the attrition-

rate random mariable with range, which is called the attriticn-

Srate function, o(r).l

iF-,r clarity zf discussion, variationF in t.e att•.ition rate due
to ch-anes in target posture, environnenta. effect, etc.,
which can be included in the model, are nc presnted.

ftuigp u
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~f~-Zr)

P'[a,r]) oQr

f (a

Range r

rigure 3 The Attrition-Rate Process

The fact that armed conflict is stochastic is well rec-

ognized and is one of the reasons for conceptualizing the

attrition rate itself as a nonstationary stochastic process,

P[K,r]. Assuming the process P~a,r] could be predicted,

one would like to incorporate the range and. chance varia-

tions of the attrition rate explicitly into a model of

combat amonf heterogeneous forces. The rate concept sug-

Sested that such a model would -b either a cifferential

aquiation (continuous-state variables) or a dffrencra-difU

rerential equation (discrate-state variabies) structure i

which the relevant coefficients Ye-re nonstativar•y .ucha.tc'

i r',:ese i.e., the PKa. sr] and P[Bj i fr for .all weapon-

target group pairs. Initial study st%,t 1 indicated th t.



83

in the foreseeable future, there was little hope of solving

either of these structures even for simplified situations. A

research decision was made to suppresi the chance v'ariation in

the attrition rate and concentrate on structures of combat

which explicitly involved the range variation in the rate when

mobile weapons are employed.

Discrete-state stochastic process models were consiuered

in which the transition rates are nonstatIonary, ire., as vary-

ing with time. The literature indicated that discrete-state

stochastic process formulations of combat have been difficulc

to solve aver. then the process is considered to be Poisson

(Lanchester type) with stationary transition mechanisms'. A.th

few solutione obtained with homogeneous forces have been of

such complexity as to delimit their- usefulness ior analysis

pp~urposes (Dolans4', 19,64; Clark, 1968). Accordingly, it was

felt that useful solutions for general discrete-state stochastic

process formulations with nonstationary transition mechanisms

could not bea obtained in the near fujture.

Although the appropriate long-range )bjective is to de-

velop stochastic formulations of heterogeneous-force al-med com-

Iat such as those noted above, we felt that a mor~e reasonable

intermediate objective would -be -the, de',velopiwnt of determin-

istio' formulations, an_&solutionsj iwhioh includ~d t~he non-
-stationary aspects of the attir4tioni rete at tbt Oxpen~e of
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explicit consideration of its stochastic elements. Accord-

ingly, t he coupled sets of differential equations described

in Part A of this report (equations 1 and 2), were chosen as

the mathematical structure to model the combat activity.

The nonstationary aspect of the attrition rates is included

in the formulation as the variable coefficients in the dif-

ferential equations, where the variable coefficients are ap-

propriately defined as the attrition-rate function, c(r).

Thus, there is one value of the attrition rate (for any fir-

in& weapon on a specific target group) at each range.

1.2 Definition of the Average Attrition Rate

Initially, the attrition rate at each range was defined

to be the arithmetic mean or expected value o.f1 the attrition-

rate random variable. Barfoot (1969) suggested that a more

appropriate definition of the attrition rate, when a single

value is used at a specific range, is the harmonic mean of

the attrition-rate random variable. The appropriateness of

this definition for use in the differential equation model

of combat is seen below.

Consider a homogeneous-force battle in which the initial

numbers of Blue (M) and Red (N) forces are sufficiently large

so that neither is totally annihilated. Each Blue weapon

system is engaged in a renewal process of attriting targets,

i.e., the times between kills are independent and identically



distributed random variables. From Blackwell' theorem
T

(Parzen, 1962, p. 183),

SUrLim Pr[renewal in (t, t+ dt)J

where

the expected interrenewJL time.

Therefore, the expected number of Red kills in (t, t + dt) is

"E[number of Red kills in (t, t + dt)] = (1)

The differential equation homogeneousforce model of combat

states that

din E[number of Re.a kills in (tt + dt)]
(2)

Socdt.

Comparison of (1) ane (2) suggests thet a be defined as 11A.

More generally, the definition of the attrition rate to use

(fo-v a specific range) in the differential equation structure

of heterogeneous-force .owDat is

rdef 
(1(3)[ •. s~(ii(at range r) =•--T•

S - where

E[Ti Ir= the expected time for a single Blue
system of the it` group to destroy a

passive jth group Red target, given the
target is at range r.

11:

;I-
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This definition for an average value of the attrzition rate at

range r is equivalent to the harmonic mean of the attrition

rate when it is viewed as a random variable at range r. This

definition also leads naturally to defining the range variation

of the attrition rate as the variation in the reciprocal of

E[Tijlr] as the range to the target changes. The range varia-

tion is called the attrition-rate function and is denoted by

c.i.(r), as used in the differential equation structure of combat.

1.3 Taxonomy of Weapon Systems for Attrition-Rate Models

Because of the definition of-the attrition rate given by

(3), research on attrition rates has been concerned primarily

with the development of time-to-kill probability distributions

and their expected values for a spectrum of weapon systems. To

ensure that the attrition rates developed are general, a taxon-

only of weapons systems that is not dependent on physicai hard-

ware characteristics (such as caliber) was developed. Rather,

the taxonomy reflects characteristics of weapons systems that

would affect the methods used in preuicting the attrition rates.

The taxonomy is shown in Figure 2. Weapcn systems are first

classified by their lethality characteristics as having either

Simp-act-to-kill mechanisms or area-lethality effects. Within each

of: these categories, we have found it useful to further classify

weapon system on the basis of their methods of using firing in-

formation to control the system aim point and their delivery
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LETHALITY MECHANISM:

1, IMPACT

2. AREA

FIRE DOCTRINE:

1. REPEATED SINGLE SHOT:

*A) WITHOUT FEEDBACK CONTROL OF AIM POINT

*B) WITH FEEDBACK ON IMMEDIATELY PRECEDING

ROUND (MARKOV FIRE)

C) WITH COMPLEX FEEDBACK

2. BURST FIRE:

*A) WITHOUT AIM CHANGE OR DRIFT IN OR BETWEEN BURSTS

*B) WITH AIM DRIFT IN BURSTS, AIM REFIXED TO ORIGI-

NAL AIM POINT FOR EACH BURST

C) WITH AIM DRIFT, RE-AIM BETWEEN BURSTS

3. MULTIPLE TUBE FIRING: FEEDBACK SITUATIONS (1A, F, C)

"A) SALVO OR VOLLEY

"4. MIXED MODE FIRING:
A) ADJUSTMENT FOLLOWED BY MtJ.LTIPLE TUM FIRE

*B) ADJUSTMENT FOLLOWED BY BURST FIRE

SINDICATES THAT ANALYSIS OF THIS CATEGORY HAS BEEN PERFORMIfl,

- igure 2 Weapon System Classification for the Development
of Attrition Rates
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characteristics, i.e., the firing doctrine employed.

The fir-' cases analyzed involved single-tube firings in

which launch of a projectile occurred only after the observetion

of the effects of the pi.eceding round. These ave called "repeated

single-shot" doctiines in our sch.e=, and are sometimts ce.nd

"shoot-look-shoot" doctrines by other analysts. Analyses have been

undertaken of two subclasses: (a) those in which no use is made

of information obtained from observations and (b) those in which

the observations are treated distinctly depending on whether they

are a hit or a miss, leading to different types of correction in

aim point for these two cases. This subclass is called "Markev

fire." Other more complex feedback situations have not been

analyzed.

The more complex doctrines involving "multiple-tube firings"

and "burst fire," have been analyzed separately. These are clas-

ses of systems for which the projectiles may be laurnched before

observation of previous round effects. Burst-fire cases analyzed

include those in which rounds are all identical with respect to

accuracy (no drifting or controlled alteration of the aim point)

and those in which the rounds within a burst vary, but the bursts

are resighted to the same aim point. All present analyses have

been based on fixed-length bu.'sts. The complex case in which

bursts are re-izmed on the basis of observation Ias not been

analyzed. Prel~ilnary analyses have been conducted of multipleý-

tube firing cases, and it has been determined that the attrition

rate for both voiley Ayd salvo fire may he represented by the same

"formulae. The mixed-mode firing doctrine .n uh q4 e period of
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of single-shot fire is folio-ed by burst fire has also been

analyzed.V il It is importpnt to note that this classification scheme

of weapon systems is not complete and that even in the areas

where analysis has been conducted, 'the formulae developed do

not necessarily represent all weapons systems in the appropriate

catýQ~ry. _i,- -t.e.attritionrir-te formulae presented should

be preceded by a careful comparison of the assumptions used

in developing them with the lethality chara._!terist.ics and firi.ng

doctrine of the weapon system being considered,

The succeeding chapters of this part of the repo-'t de-

'Ma scribe the detailed development of attrition-rate models for the

different classes of weapon systems. The developments are orga-

nized by the mathematical assumptions and techniques used,

and include multiple approache-s in obtaining the same and

similar results in some of the cases. Our intent is peda-

[ gogical, in that we hope it will acquaint--the user w".th approachesb :: to modiiy or develop attrition rates for syes -em .ot her than

those modeled in the research program.b

Chapter 2 utilizes detailed probalbil--ty analsyses to deter-

mine the complete probability 1'istribution n a•.•e t3ime.rto-

- kill random variable under the; 'l16owi r assu 10.ios:

(a) The systems are impact-•,otha'•-ity, r-peWted srigle-
"shot systems of class, lA 6r l: .

- .-- -.-. ,
44? -

IL ,.
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(b) The probd,"lity xf kill given an impact is identical

for everv round fired,

(c) The timc preceding the firing of the first round is

not random, and the conditional times to fire a

round after a hit and ifter a miss are not random,

(d) The probabilitv that a round fired after a preceding

hit or miss results in a hit or a miss is not in--

fluenced by the knowledge of other hi3tory of the
engagement (such as the number of rounds fir.d or

the number nf previous hits),

(e) The engagement terminates immediately on a kill.

This chapter also presents straightforward probability anal-

-yses of the expected time-to-kill in the impact-lethality burst-

fire problem which do not involve calculdtions of the complete

- -probabilitv distributions.

Chapter 3 presents an alternative mathematical methodology

'for the de,'elopment of probability distributions and expected
- .- MClues of the time-to-ill variales in the repeated single-

" hot -impact-fire case. The method permits relaxation of as-

*- zIu PU T Sý b) and ,c• above, but involves the eyti.sive use of

.La la•ze tr,ansform analyses of random variablez. Thus it is

•mewh~t 'nore general, but also more mathematically difficult,

athe ~methods of Chapter 2.
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Chapter 4 presents a very general method of determining

the expected time to kill a target for, a broad class of weapon

systems which includes the repeated single-shot impact-le-h32ity

category. The methods usrJ do not determine the full distri-

bution of the time-to-kill random variable. The methods,

although based in the theory or Markov-renew3l or semi-Markcv

processes, do not require detailed understanding Or the theory

in its application. Only very general aasumptions concerning

the firing and lethality pro:esses are required.

Chapter 5 describes the development of attrit.ion-rate

models for area-lethality systems. The methods are straight-

forward detailed analyses of the process, similar in general

*. philosophy to the burst-fire analyse% of Chapter ?, but differIng

in t:'.chniques. The analyses are based on pre,'io,,sl', dccz.:,ente2

models of the artillery fire proccss. This chapter does n,'t

specifically concider the kill -are in terms o. the "im'-to-k.l

random variable.

1.d Aeferee"e,

Barfoot, C.3., "The Lanchester Attrition-Rai.e Coefficient:
Some. Comments on Seth Bonder's Paper end a Sugge.•;t(,d
Alternate Method," Operatifine Rtaasroh, Vol. 17, N.e,. 5%
1969, pp. 888-94.

Clark, G.H., "Stochastic Combat Models,� Ph.D. Dissertation,
The Ohio State University, 1969.

Dolansk, L., "Pro-sent State of the Lsnchoste'r Theory c.
Combat," Operatione Reaecrc., Vol. 12, No. 2, 1964,
pp. 344-58.

Pcrzen, E., St.:ihaotia Proooseas, San Francisco: l'ien-: :,
Inc., 1962.
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Chapter 2

IMPACT-LETHALITY SYSTEMS
RriPEATED SINGLE-SHOT, BURST., AND MIXED-MODE FIRE DOCTRINE

Seth .onder

This chapter presents the development of models to pre-

dict the attrition rate for many of the weapons classified as

impact-lethality systems. Systems of this type aim at a point

target and projectiles must impact upon the target to destroy

it. Methods are developed for repeated single-shot, burqt, and

mixed-mode single-shot Markov and burst-fire doctrines. The

results are models for the probability density function and

the expected value of the time-to-kiZZ randoimI variable at

d rPecific range to the target since, by definition, they are

used directly to predict the attrition rate at a specific range.

Although the conditioning on range is explicit in the basic

def.inition of the attrition rate (Cee equation 3, Chapter 1),

the range notation is omitted in the remnainder of this part

of the report for clarity of development. For similar reasons,

the i,j notation for weap-n-target pairs is also omitted.



Ii- 93

2.1 Repeated Singz.e-hot,:azkov Fire Dootrineo

•I Consider first the development of an attrition-rate model

for repeated single-shot, Markov fire weapon systems.

Exposition of the development proceeds as a straightforward

analysiq of the physical process. Implicit in this type of

development are several assumptions which are listed here as

a convenient summary and reference. These are

(a) the systems are of the impact-lethality, repeated

single-shotv Markov-fire class,

(b) the probability of kill given an impact is identical

for every round fired,

kc) the time preceding the firing of the first round is

not random, and the conditional times to fire a round

after a hit and after a misa zre not random,

Wd) the probability that a round fired after a pre-

ceding hit or miss results in a hit or miss is not

influenced by the knowledge of other history of the

engagement (such as the number of rounds fired or

the number of previous hits),

(e) the engagement terminates immediately on a kill.

A reasonable physical manifestation of the single-shot,

Markov fire doctrine is given by a main tank gun whose firing

iPart of the derivation in this section ia given by Bonder
(1967), but are repeated here for convenience and continuity
of development.
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process is said to vary from round to round as shown in Fig-

ure 1. Figure l'a) shows the adjustment procedure following

a hit on the first round which is to replace the crosshairs

on the target--presumably the position of the crosshairs for

the fii,Lt round. Figure l(b) depicts the "burst-on-target"

adjustment doctrine following a miss on the first round.

Succeeding adjustments, based on the result of the immediately

preceding round, are made in a similar fashion until the target

is defeated. The probability density function (pdf) of the time

to accomplish this result is obtained by essentially modeling

this adjustment process as it occurs, round by round.

Since the ,•bjective of a weapon system is to defeat the .-

enemy, we begin by defining lethality and its unit of measure-

mert.1 In brief, lethality refers to what hapiens to the target

when struck by a projectile. The particular effect of interest

is the target's combat utility. When this combat utility is

veduced to zero, the target no longer poses an active tactical

threat and may be considered defeated or killed. The definition.

of a d1-feated or killed target is, of course, dependeiint on the

target's mission or role in combat. For example, consider an

armored tank which is frequently referred to ab "mobile,

t The lethality definition is paraphrased from Zeller (1961).
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[I F
protected firepower." Some of the tank's com#t missions

require primarily firepower, others require mobility, aad

still others require both firepower and mobility,-ano, the Ii

definition of lethality must consider which of those are F
relevant in the context of a study.

Lethality against a particular target is measured-as

the conditional pr.obability of a kill, given the projectile

hits the point target, and noted symbcoi-cally az either..

P(KIH) or P This measure is dependent on the me4hnical

damage caused by perforating and/or striking the target, I.

and the loss in combat utility resulting from this mechanical

damage. Procedures developed to predict this Measure for

diffarent types of targets have been deyv(eled, See, for I

example, Zeller (1961), Goulet (1963)t, FrPe n (1966), and

Meyer (1967). _

Arother-measure of lethality can be defined as "the number

of hits, z, needed to defeat the target," Sincr we are con-

cernel with destroying the target just once, this measure

is directly related to the conditiona1 kt.tl probability by

the geometric density function

p(z) ( - PK)z- PK"

The number of hits needed to defeat the target, z, is initially

used as a parameter in subsequent developments of this chapter.

t'

-1

i
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The number of hits required to effect a kill describes a

I4anQ's lathality characteristics against particular targets.

The weapon's accuracy capabilities are next considered by

developing the distribution for the number of rounds fired

(hits and misses) to defeat the target.

Let

P1 first round hit probability,
• p c onditional probabili'•y of a hit given the

preceding round fired missed the target,

u- U conditional probability of a hit given the
preceding round fired hit the target,.

and consider the sequence of trials (rounds fired) connected

in a regular Markov chain with transition probability matrix

hit miss

* P hit u - u 0 < u <l

U1- P) mils p - p 0 < p <

It is assumed that p and u are defined only on the open

interval (0,I). We seek the pdf for the number of rounds,

N, to obtain z hits if the sequence of firings ends with a

hit.1  This can occur in two mutually excluaive and

he proce e could be extended to remove this assumption
that the firer recognizes when the target is defeated without
tchnical difficulty but with increased complexity of
discussion.

I-
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collec'cively exhaustive ways.

f(Niz) f(N'H'HIz) + f(N'M'HIz) • (2)

The first term on the right-hand side of (2) is the probability

that the first and last rounds of the sequence result in hits

given that the z hits occur in N firings. The second term is the

probability that the first and last rounds of the sequence

result in a miss and a hit, respectively, given that the"

z hits occur in N firings.

To determine f(N.H.UHI) we consider the following combina-

tion of firing results:

In the first rI firings, the event hit occurs everytime;

In the next sI firings, the event miss occurs everytime;

In the next r 2 firings, the event hit occurs everytime;

In the next s2 firings, the event miss occurs everytime;

In the next sk.l firings, the event miss occurs everytime;

In the last rk firings, the event hit occurs everytize,

The joint occurience of these events has the prcbability



!

1 P u (1 - u)( p) pu (2 - u)(l - p) p..-.pu

Sr +r 2+...rk-k -s k-i
P lu U (1- U) k(1 - p)sl+s2+"k-1-(k-l

(3)

Since there are a total of z hits and (N - z) misses,

Sik k-1

r zi Z and 3 N z
7?

4 3.21it 1

Therefore, (3) becomes

z.-k k-l N-z-k+lik-lP u (1 U) (3. p)

Accordingly, the probability of the outcome depends only

on N, z, and k and not on the values of ri and si. The number

-, of hits, z, can be expressed as a sum of k positive integers

(the ri) in (:11) ways and the number of misses, (N - z), as

I *am of (X -31) positive integers (the s~)in N) ways, 1

Therefore, thu prc, bability that it takes N firings to obtain

z hits, the first and last being hits with probability P1 and

p or u, respectively--where the hits occur in k groups and the

misses in (k - 1) goupc--i3

"Proof of this assertion is given in Appendix B, 2V, 1.

II

4'
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/N-Z z-kk-l -l -z-k+l

The outcome can occur for all values of k such that (1 < k < z).

Accordingly,

z-l N:1 N

z

f(NMH-Hz) (1 - k -k(1l) k- )k-l(-z-1(1 P)- tz-klP~furNN=z.

±'(1z E- (-I (7)-

k=2

N >z (5)

Sinc Nk-21 0 when k =1 and N > z.

By an analogous derivation,• it can be show+ that

kal-

for N > z. (6) Il

Substituting (5) and (6) into .(2) completes tn%ý ftrivation for

uzk= UIki k I 'a- -N-z-k+i

k=2% (k1

kz•

1)zk ,-
-1z N- -
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where Q 1 Pl) and q (1 - p). The reader is reminded

that equation 7 is a conditional distribution which is dependent

on the integer z.

The characteristic function of (7) is defined as

*NIz(S) E[eiSN] = eisN f(NIz) , (8)

N=0

where s is a dummy variable and i ;_

It is shown in Appendix P, 2, 2 that

Qszpe 'S z-i .
(S) eiS P + 1_qeu + (1-qe [ i qei

(9)
Setting a 0 in (9),

'Njz(o0) f(.Nlz) I
NI:

poves -that (7) 1-3, in fact, a probability density function.

The expected value of N is obtained from (9) as

£(Njz] 0 ds

U - P)1 + (1 -UA, 1), (10)
P P
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The density function f(Piz) flJr thz inumber of rounds that

must be fired to destroy particular target i, dependent on the

lethality and a--curacy ý-apabi].ities of the weapoui system. Two

other important weapon characteristics remain to be considered--

the system's acquisition capabilities end its rate of fire. We

consider these characteristics in a manner such that the acq'-

sition and firing processes are serial. That is, targets are

destroyed by sequentially acquiring a target, attrit.ng it by

fire, acquiring a new taiget, attriting it, 3cquJ..,iin. 4 .w

target, etc. This is irn contrast to paral-ei. ecquisj -n Crd

firing processes in which new targets may be acquired while a

previously acquired one is being attrited.

We include the timing characteristic• of acquisition and

firing by defining

I the time to acquire t3rtets,

= time to fire the first round,

= time to fire a round giver the preceding round.1
was a hit,

= time to fire a round given the preceding round

was a miss,

I = :projectile flight time.,

and consider the following seqý,16nce of events from target

acqui,-ition to destruction. The sequence begins with detection

which takes T time units to occur. The first round is then fireda
and ar'rives at the target area (•i~ + f time units later. If the
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first round misses, the next round will arrive (Tm + T.) tire

units after the first. If the first rouwid hits the target, and

more than one hit is required (z > 1), the r.nxt round will

arrive (Th + Iff) time units later. The sequence of firing

after hits and misses is continued unt I the final hit which

destroys the target is obtained. TL.is description is consi!tent

with our single-shot Markov firing doctrine in which the result

of the previous round is observed before the next one is fired.

In this process, rounds will be fired after each of (z - I) hits

and (N - z) misses. Accordingly, the time to defeat a tarveo

may be written as

(T + Tf) h )(Z+ )(N 1 z)

C + c

where

c2 m +t

Eqiuation 11 eefjiu-s T as a linear function of the discrette

random variable N, and establishes a one-to-o;,e tran:,kimati'.

between their respective s .paces. The density functiorn

of T is readily obtained from (0 by the charge of varialies

technlqu" for discrete variables (Hogg and C:aig, _19b) a-



P u T c C1 + c 2 z

k- k- 2

k=2

1( - -k(l u)k-ipk- 1

bI

k-i

T c e1 + c 2 z

(14)

Ih,. chardct.-'istic function of T, ,lz(s), is obtained directly

t r',- (9) by employing the following property of characteristic

[is(C 1 +C.210)

:~~ +

el 2 L[ i e2N]

: ee i I][ c's(15

.,X C ~)+ •z~ + (1 - u')pe. .1 (-15

(1 - ,-;. - Je*'~
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The expected value of T can be obtained froin (15), or, more

directly, by _ýh.ploying the linear property of the expected-

value operator with (11). Accordingly,

E[TJz1 c 1 + C 2 E[NJz1

1 - Pl) u' (16ý)
1 2 [ý _p p I -

The characteristic function, OTJz(s)I and the expected time

to destroy a target, E[TJz1, are conditioned on the integer-

valued lethality variable z, which is thp. nil-ber cf 1---Ls requirtýd

to destroy the target. This conditioning is removed and the

continuous lethality parameter P . (the conditional probability

of destroying the target given it, is hit by a projectile) intro-

duced by the operations

W

OT(s) 1: ýTlz (S)P(Z)

Z=l

Isc 2
iS(Ta+Tl+lrf) Qlpe

PP K e Isc

isc
is(T h +Tf Ope 2

P e U +
K qe ISC2

(17)
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where p(z) is given by equation 1 and

E[T] ELTIz]p(z)

z:1

+
'E +~ -Ic h fu

(18) +A

The characteristic function given by (17) is obtained by more general

methods in Chapter 3 of this part of the report. The one-to-one

correspondence between probability dersity and characteristic

functions facilitates obtaining the unconditioned pdf of the random

variabl- T from (17).

By the definition established in Chapter' I, Section 1.2, the

reciproza! of (18) is the attrition rýate for impact-lethality

systems that employ the repeated single-shot, Markov firing

doctrine. Special cases of (18) include

(a) Elual Succee'n Ro u Times (i0 T

rp + ( 1 .1) + - PP(U (9

1 S

(b) IndeL) rndent Fire' (F : U 6; 1h~ M )

T +
E[T] Ta + TI Ts + (20)
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I

(c) Independent Fire, Equal Firing Times
( P 1 = U = 6 ; T 1 = 'rh T Tms

s + f

E[T] T 4 + 19-ep---(21)
8 rK

These special cases reflect the fact that the attrition rate

for other imDact-lethalitv, reDeared sing1e-shot systems are

given by equation 18. For example, equation 20 may be used

to determi.ne the attrition rate for guided -missile systems. In

such systems the accuracy capability of each round in a sequence

is essenti.ally the same but the timing for the first round is

different from all succeeding ones.

2.2 8Burst and Mixed-Mode Firing Doctrine

Consider next, systems that employ impact-lethality

projectiles and possess the capability of burst fi-re.

Systems of thi.s type include the vehicle rapid-fire weapon

system tVREWS), aid -iecondary armament .ori a tank.: T hese

systems can employ a number of reasonable fire doctrines

such as

(a) repeated single-shot independent fire,

(b) repeated sirg;le-shot Markov fire,
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(c) burst fire, and

(d) single-shot Markov fire until the first hit is

obtained and then immediately switch to burst

fire.

Doctrines (a) and (b) are single-shot fire doctrines, and

accordingly, the attrition rate for these systems is obtained

from equation 18 and special cases of it. The attrition rate

for doctrine (d) is obtained by considering the single-shot

and burst portions as two separate processes:

(1) single shot until the first hit is obtaineOc and

(2) burst fire until an additional(Z - 1) hits are obtainea

to defeat the target.

Let
n the number of roun-1 s fired to get the first hit,

2.n2=the number of rounds fired to get (z - 1) additional

hits

be two random variables with expected values E(n, z) and

E(n 2 1z) and density functions fl(nlrz) and f 2 (n 2 1z), respec-

T/ely. The distribution fl(nllz) is a special case of

equation 7 (page 100), in which z 1. Accordingly, E(n Iz) is

giver, by equation 10 with z P 1.

1 - P1
E(nlIz) 1 + v 1 (22)
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where

v conditional p'obability of a hit following a

miss but preceding the first hit

replaces the symbol p. Additionally, it is recognized that

the distribution for the burst-fire phas, , f 2 (njz) is, except

for a slight shifting of the axis, equivalent to equation 7

with the initial state probability P1 = 1.0. The shifting of

the distribution is due to the fact that the gunner, not waiting

to observe the result of each round before firing the next one,

will fire a small number of rurnds while the z th and last re-

quired hit is in flight to the target. Thus, from equation 10

E(n 2nz) z + (z - i)(i - p) c , (23)

where

p re-hitting probability (assumes the hit

probability of each round in a burst is

the same whether it follows a hit or a miss),

c number of rounds fired while the round

which is to become the zth hit is in flight,

ltx] is read as the maximum integer in x. The symbol Tb is
is defined on page 111.
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The total number of rounds fired to defeat the target is
+I

n = n + n 2 - 1, (24)

where the minus one ac'counts for the fact that the first hit

was counted in both processes. Since the expected value is

a linear operator

E(nlz) E(nllz) + E(n 2!z) - 1

Ul - k,1) (-i( P
= Z + + (z - -

v p

(25)

Define

T time required to obtain the first hit,

T2  time required to obtain (z - 1) additional

hits,

T - time required to defeat the target (obtain

a total of z hits).

Analogous to the development of equation 11,

T a + + + (T + Tf) (nI -( ) (26)
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:a and

'"0 for z =1

TT

2 h + Tf + (z -
2 )Tb + 2- c) - zI b for z > 1

0 for z 1

(27)

T h + Ef + (n 2  c - 2)b for z > 1,

where

Th time to fire the first round in the burst

process after obtaining the first hit in

the single-shot process,

Tb average time between rounds duiving the burst

firing mode. The averaging is performed over

the time between individual rounds within a

burst and the required cooling time between

bursts.

Equation 27 is obtained by the following rationale. The

gunner senses the hit and fires the first burst-mode round

in ch seconds. That round arrives at the target Tf seconds

later. All subsequent rounds arrive in a string at the target

in intervals of Tb seconds. Excluding the c rounds fired after

the round which results in the zth hit (since these additional

rounds do not affect the time to achieve z hits or the time to

defeat the target), rounds are fired after (z - 2) hits after

i .
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the first and [(fh - c) - z] misses. Thus, the associated

expected values are

E(TliZ) Ta + TI - Tm + (Tm + T f)E(nil Z) (28)

and

0 for z
E(T 2 z)

Th + Tf - (c + 2 )Tb + -b E(n21Z) for z > I.

(200

Noting that the overlap of one round between the two firing

processes does nct exist in the firing times

T = T + T, (30)

and

E(TIz) E(TIlz) + ;(T21z)

c3 + c i;(nllz) z 1

ca + c4E(nljZ: + C z+ T 1

(31,

c T + T T
3 a I -

c4 T m + Tf

C Th + Tf - (C + 2 )Tb.
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Removing the conditioning on the lethality variable z by

E(T) A E(Ttz)p(z) (32)
z~ 1

and employing (22) and (23)

E[T] T + TI + T + (Tm +f) V )

(33)++ Q] b 1
+ (1- P~K)[h + Tf + ( - K

PK

The reciprocal of equation 33 is the attrition rate for a

weapon system that employs mixed single-shot and burs'-

fire dootrines, and impact-lethality projectiles.

Doctrine (c), the pure burst firing mode, may be viewed

as a special case of the mixed firing doctrine in which

(a) the time to fire every round except the

first is Tb,

(b) tne probabilit'! v = p = re-hitting probability,

and

(c) only the flight time of one rourd need bt

cons idezed.

These differences reduce equation 33 to

[i - K(PI - P)]

E[TI + + T~ - Tb + [ b

(34)

E[ ]="tp
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If all rounds in the burst, including the first, are indepen-

dently fired, (P1 = p), equation 34 reduces to

Sr•i- pp,•
E TcT a T + T + T + - C35
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Appendix 8, 2, 1

NUMBER OF WAYS THAT K GROUPS OF HITS CAN SUM TO Z

Seth Bonder

We seek to prove that the number of ways that k grzoups
of hits can sum to z is (k)- Let the k groups of hits be

represented by k + 1 bars. Consider initially, the problem

of dropping z hits into the k groups as shown below with -n x

representing a hit.

I x ixxiJ .... j jxxý

gr;up 1 3 4 k-i k

The first and last- trs are fixed. Therefore, this problem is
one -f • ning the -umber of ways that, from z + k - 1 items

(hits and bars0, you can drew z hits. Equivalently, the number

of wa• -l- that z hits can be arranged in z + k -1 items, where

z and k - 1 of these are different, is

This problem permits groups to be empty. For s uat~ons with ,It

least one hit in each group Start by dropping one hit in .>-ach,

i.e., subtract k from z in (I). This produces the desired result

that the number of ways that k groupL of hits can sum to z

is (-1
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.eth Ponder

n;- definition., the characteristic function

ON~z (S) =E I eisN]

-"• eisN f (N Iz) (I

where s is a dummy variable and j -•T. SubstitutintZ f'NIz)

from the main text into equation (1) ,

ýNjz(s)- A + B , (-)

where

A - 1  eizzuZ-1

+ CO z eis( Z) uz-k (1u) k-lp k1 Nl~ qN-z-k*1l1: E (k-1) lu~Ik k-2

N-z+÷ k:2

(3)
and

: z4 1 e Z-1 q.--
N'-z*l kxl k(Ik)



A P
VA "- f" ei ; :a•'

Z I

+ 32I e iS, N- z-i N.- z-!2

+ u -2  (J-u)p 2 1 )

N~z+i
\Ii"'N~z+I.

1. . ........ ..

'p - E z-2

N= z+ 1

By letting y (k-?). we note that tl-.e s Im ;n th e 1-h i tpr-" of

equatioi S may be written

Im
is

Skz e 1 N-z-ljNz--
N=z+1 

Y

or

NSk e y sN ( N -zK ) qN -z -y -l (6)

SN-z+l.+y

{S

I
I
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since (a) 0 whenever b > a. Expanding (6) and recal11vii that

(a+b) (ab)
\a b

Sk eiS (z+l+Y) 1i+ (y is y+( 2 (qis= eZS + • 2.e... ... . (7)

Since

jqeisl Iq leli = q < 1,

the series in the bracket of equation 7 is a binomial series

of the form (l-x)-n Accordingly, equation 7 may be written

S ~ " iS (z+l+Y)

(lqeS)Y+l

eis(z+k 1 ) (8)

(1-qe is ) k'

Substituting equation 8 into equation 5, term by team,

I ie Zz-1
A eP1  uPi
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I

+z-Z3 (1 -2 2 is(z*2) is -2+l-)pe (i-q )2

[I * ..............................................

. (lZu)Z-1pz-1 i ( lz-1 e s (-)"

\.Z-1

e z-I u Z-l-y (l-upelS1

S =0 / l-qeis

and

A e *lS U + (10)

since the sum in equation I is a binomial expansion.

By a derivation analogous to equationseS through 10,

it can be shown that

lP (1-u) ie(11
.I. I.- q~eIs) I - qes"

I
a

!1



u~siitjutinlg eq~atior !U ani equation 11 into equdtion 2,

the characteristic 
function

is l~peis(-?es 1
%Nzs):eiZP, + u +

ýNzl-qelS s l'qe is

"(12)
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'MPACT '-LE7HALJT !2YSTEMS, iEP£A'rTE SINGL--SHOT FIRE
DOCTRINE, TRANSFORM APPROACH

Stephen Kimbleton

The previous chapter presented methods of developing

attrition-rate nrediction models for impact-lethality systems.

In this chapter we present an alternate approach to developing

the time-to-kill probability distribution for systems of this

type. This method, based on the use of Laplace transform

techniques, p-ovides another viewpoint of the process and can

be readily employed to model systems in which the probabilistic

character of the process timing (acquisition. firing, etc.)

is significant.

Consider the Markov firing doctrine described in Section

2.1. Although the individual sequence of hits and misses forms

a Markov chain, there is a related sequence of independent,

identically distributed random vartibles which is more useful

in the present development. For an irreducible, positive,

recurrent Markev chain, the number of transitions SIV$2,...

between entries into a given sta forms a sequence of inde-

pendent random variables and, after the first entrince, the

random variables are also identically distributed (Parzen,

1962, p.266). Employing the same notation used in Chapter .2,

we observe that

P(S1 :) ] P1

I-____________________________________



S• for, r ) ,

PLs1 = r] = )(1 p)r- .

Similarly, for j> 2,

P[S. i] u

and for r > 2,

P[S. r) (1 - u)(1 _ p)r-2p

Using these observations and proceeding via straightforward

calculations, it is easy to show that

F~ - PI

[ppF P

VAR[S] P + 1 (1- P)[2p"2 * p-1 1]- ES 2]1

(2)
VAR[S u + (1- u)C2p- 2 + p 2-1 + 11 ]- 21

for j > 2,

Iii



e- Qlp e-,?0
Pie + -qe

MS.(8) ue 0 + P(I - U)e

JS. 1 cc

where Q, 1 - PI, q = 1 - p, and MX(O) is the Laplace-Stielties

transfcrm of the random variable X evaluated at e. Using the

preceding results, the central limit theory of renewal theory

may be used to de:ermine the number of rounds that must be

fired to obtain j hits for j reasonably large. For - smal'., the

I exact distribution of the number of rounds may be obtained by

i'rute force calculation, while bounds on this ,distribution may

be obtained through the use of Tchebycheff's inequality.

If N denotes the round on which the k1ll was obtained

and z denoted the number of the hit on which the kill was

I obtained, it is seen that

I def z

I N * S1 * ... * S: = i.

SI

I
.1

II



.'. >a. a ;er ,iLi<• .. tnd 6. may Le assumed indepeen.e*'L

. , it I(lA'ows fr'om a well-known %.heorem on randon.

:ujf,.,; of r'andom vwriiables ,:hat (Feller-, 1968, p. 287)

M (e)M e)
N M- ) (e)Gz_(xS()) , (4)

whero G ~(y) is the probability generating function of the

random variable z - 1 with dummy variable y, and S is a random

variable having the distribution of the random variables S.J

lor - 2. Since the conditional kill probability, PK, is

constant for the specific case under consideration, z - . is

geometrically distributed over the integers > 0 and

PK
G z-(y) = 1 U PK "

K

)bserve that until this peint in the argument the explicit

form of z - I has not been useds and, indrsed, (10) is valid as. long

as z - I is a noii-neg3tive integer-valued random variable.

Substituting in (4),

Pt' (()S s S



I?0 e I - .

i -L q + u(. - : + . :

Hence,

VARIN] = E-[S 1 /j + (.L,.ir

(AFI LS ) pI' KrI~

Sn - 1 2

Since E[S1 ]., E(SJ, E[S 1 2J, E(S ] have .or cai. •e ex'-•-, •:: :

temae of P' P i, u, p, it tollows that [N] w an, ',AR[.; m'l -•

so expre•..ed by direct substitution.

h :!i
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Ilii tnme'al. it is difficult to obtain the underlying

probability distribution given its probability generating

function. However, (6) is of the form

e- C-20

"A2 + B2 e- + C2 e-2e

jnJ since this is the Laplace-Stieltjes transform of a posi-

tive integer-valued random variable, it follows that this

expression also has the form

SPn e-n ,

n--i

where p PIN n). That is,

B1 e- 8 + C1 e-2e = (A 2 + B2e0 +1 C2 e 20 ) pne e •

Upon equating coefficients, and observing that A2 - 1, one

obtains

pl = B1

P 2 C2 - B B2
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!
and for n > 3, pn si.tisfies the difference equation

Pn + B2 Pn- 1 + C2Pn- 2 " 0

By a well-known theorem on homogeneous second-order difference
equations (Goldberg, 1958, p. 14i), it follows that if A1 ' X2

22

22are real roots of the quadratic ecquation A + B? A + C2 0 ,

then

-8Xn + aX

where 81 and 82 are u-' Uly determined by the requircment

that they sat sfý,

p, + ~2 X2

P 22 2
P2 -- ^i + 8 2  2

If, however, ,, , are conjugate complex roots, then2

p yr cos(nt + 8

nI
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where XA and 2 have the form r(cose + i sine) and y, 0

are, for Y )-0 and 0 < 0 < 2w, uniquely determined by the

require. .'.

P1  yr cos(e +

P 2 y= r2 cos(20 + S).

Finally, if A = A2 = X, then

P11 X G1I + 02n)A"

where 81, l 2 are again determined from pI, P2. Innpection

of (6) reveals that all of the preceding cases are possible.

It is relatively easy t-- solve the above difterenue equations

through the use of standard computatiolal mechods.

Consider next the times given in Chapter 2 as

Sa = time to acquire target,

Tl = time to fire first round,

'r. time to fire a rmund gSvmn the preceding round
was a hit,

m time to fire a round eiven the preceding round
was a miSs,

Tf O ,ro]ect.le fnight time.
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!
We shall first assume the T's are constants and then give

a brief discussion of the modifications necessary if they are

instead assumed to be random variables. For deterministic

T's, it is convenient to assume that each T is a multiple of

some fixed constant, e.g., a second or millisecond. In practice,

of course, this condition is always trivially satisfied.

By virtue of the preceding assumptions, if X1 is the

random variable giving the time to the first hit and for

j - 2, Xi denotes the time between the (4 1 )st and the jth

hit, then the sequence of random variables {Xj; j > 1) is

independent and the random variables {Xj; j > 2} are identically

distributed. It is also apparent that X1 assumes only values

of the form T a + T 1 + (r - 1) Tm + rtf for r > 1, while Xj

assumes only values of the form Th + (r - I)*m + rTf for j 2,

r > 1. Indeed, we see that for r ) 1

P[X = Ta + T1 + (r- 1)Tm + rTf P[SI r)]

PEXj : Th + (r - 1)T + T ff] : P[S rJ

However, this implies that the Laplace-StilU-Jaes transform

of X and X, are given by
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Mx 1 exp{-(T a + T 1 - m)IMS ((Tm + Tf)e)

(9)

MX () exp{-(Th - Tm)8}M. ((Tm + Tf)e)

If T denotes the time at which the target is destroyed

Skillcd, thexi it follows that

T : X, + ... + X

Employing similar arguments to those used in developing the

transform MN(6), we have

MT(e) 1 - (1 -PK)N'(O) ' (10)

where X is a random variable having the distribution of the

random variables X for J > 2. Using (3), and (9), MTHe) may

be expressed in terms of the basic par4meters P1, U: p. r.nd

,K' resulting in an.expression equivalent to equation 17 Ot

. hapter 2. Either by differentiating the appmpriate Laplace

transform or by observing that X, is a linear transformation

of Si for I . 1, it can be shcwn that
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(13

E[X] 1 T a + T 1 + (E[S] 1 1)T m + E[S 1I]f,

EEX] = Th + (E[S] - I)Tm + E[S]Tf,

E[T] = E(XI] + PK ) E[X , (12)

VARLTJ =EEX 1 2 + ax ELj

+ 2 PK EEXIJE[X] (13)

+ 2 ([ E2 [X] - E2 (T)

The reciprocal of (12) is the attrition rate for impact-

lethality systems ohich employ the single-shot, Markov firing

doctrine. This result was obtained in Chapter 2; however,

the methods described in this chapter have a generality that

can more readily be employed to model other weapon systems.

SSome possible extensions and benefits of this approach are listed.

belowt

1. In obtaini.4 the transform M.(O), it was implicitly assumed

that the distribution of z, the number of hits required to

obtain a kilL, is gometric, However, as long as z is a positive

f'

*/



132

integer valued random variable the analogue of (4) will hold,

i.e.,

"Mx (O)G, (Mx(e))

2. In the preceding discussion, the T's have been assumed

to be constants. However, if the T's are assumed to be non-

negative independent random variables, the associated random

variables X. will be independent for i > 1 and identicaliy

distributed for j > 2. It follows that in this case also,

expressions for the Laplace-Stieltjes transform of the time

to kill may be obtained. Further, using recently developed

techniques fcr inversion of Laplace transforms (Dubner and

Abate, 1968), the exact probability distribution corresponding

to (6) or (10) may be obtained.

3. Throughout our discussion we have assumed that a target

which is being fired upon is, a% +he end nf any given round,

eithee unimpaired or destroyed. Although this is a reasonable

assumpticn for some categories of weapons and targets, in many

cases of interest there will be a number of the intermediate

states of destruction of the target. At the cost of more

involved computations, it is possible to extend the preceding
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Sanalysis to cover these cases. Thus, assume the various

states of the target are labeled from 0 to N, 0 )or-

responding to an unimpaired target and state N correspondingf to a totally destroyed target.

In general, a targe-. need not pess through a12 the

intermediate states before being destroyed. Indeed, given

a target is in state i, there may well be another state j

corresponding to a greater degree of destruction of the target,

and yet state j may be effectively unreachable from state i.

To see this, consider the following simplified version of someI:• results discussed by Goulet (1963). An enemy tank is assumed

to be in one of four states: undamaged, mobility destroyed,

firepower destroyed, or completely destroyed. (We assume that

complete destruction corresponds to the lestruction of both

firopowe. and mobility.) Labeling these states fV-M 0 to 3,

respectivelyg it follows that if we are in state 1, state 2

may not be reached,. Irdeed, if we are in state 1 and thae

"" firepower capability is destroyed, it follows from our hypoth-

eses that the'state of the tank I's 3. It is also of interest

to rote that even though a tank in state 2 would usually be

regarded as &iv.ng suffered more destruction than a tank in

state 1, nevertheless, state 2 cannot be reached from state 1.

V.V

:,•"- • ."~~ " ," '

::. :~ ~ , ". .... .--4-: .?•..
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Assume that a tank is currently in state i and the next

succeeding state of the tank is j. Then by applying the

methods described in this chapter, the Laplace-Stieltjes

transform of the time or number of rounds to go from i to j

may be obtained. Let the sequence oZ successive states of

destruction of a tank be 0 1i -1 ... 2 ik l N. Then

the transform of the time or number of rounds needed to go

frcm state i. to .jl can be obtained for 0 <_j ! k - 1, and

the product of the transforms then gives the transform of the

tim3 or number of rounds needed to go from state 0 to N along

this particular path. The sum of these transforms over all

possible paths weighted by the probability of each path then

give. the Cu2o.(uditioade) trs.orn of the time or number of

rounds needed to tgo from state C to state U. The number of

summands would appear to be very lage if the number of intor-

mediate states of destruction is large. However, in practice,

the states are usually labeled so that if we are our'ently

in state i, then only states j with I i £ may be reachad. Thus,

the ult.imate computational feasibility of this mithod depends
on both the magnitude of N and the number of posible pat hs,

from 0 to N.

4.. The approach used in this chapto: coioceptually reduces the

difficulty of testing• the atttiLtion-rate ode l against

. .• . . • " .

!ii - . : .: .. . .- ..-
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experimental firing data. The initial problem of drawing

I inferences on the parameters of a Markov chain (a difficult

'$.ask) has been replaced by the significantly simpler problem

of drawing inferences as to the independence and identical

distribution of sequences of random variables.

3.1 Referenoe.

Dubner, H., and Abate, J., "Numerical Inversion of Lapalce
Transforws by Relating Them to Infinite Fourier Cosine
Transforms," JournaZ of the Assooiation for Computing
Maohinery, Vol. 15, No. 1, 1968, pp. 115-23.

Feller, W., An Irntrduotion to Probabititly Theory and Ite
Apptioatione, Vol. I, New York: John Wiley and Sons,
Inc., 1968.

SGoldberg, S., DfferenOe Fquations, New York: John I -e'.' nZV Sons, Inc., 1958.

Goulet, B.N., "Methods Used at U.S. Ballistic Research
Laboratories for Evaluation of Tank and Antitank Weapons
in the Antitank Role," 8RL Memorandum Rejort No. 1455,Ballistics Researen Laboratory, Aberdeen Proving Ground,
Aberdeen, Marylind, March 1963.

Parzen, E., Stoahatefe Pwooesaes 8 San Francisco: Holden-TPav,

1 "Inc., 1962.

II --

N. - 2 -"



r36

Chapter 4

SEMI-MARKOV .,NALYSIS

Robert Farrell

In Chzters 2 and 3, we cescribed two methods of obtaining

time-to-kill probability distributions for impact-letnality,

repeated single-shot weapons. The attrition rates of these

weapons are obtýi ned as the reciprocal of the mean time to kiil.

This clipter treats a general method cf developing such attri-

tion rates without analyzipg the complete distribution of the

tire to kill. The approach taken In this development is

based on the theory of senji-Markov or Markov-renewal processes,

and is a generaliz,,tion of the methods in Barfoot (1361').

basically, we analrze thi process Li which & weapon fires

at a target unti3 he decides to cease fire on it, fires at

a second target until he decides to cease fire on it, etc.

This process is analyZed ty subdividing the period of fire on

a s ingle target into intervals corresponding to differences

in the &ehavior or state of the firing weapon system.

Th:s technique may be used to determine the expected

time to kill in any firing process with a set of diatinguishdble

states S9,...,SN (e.g.,, first round tfired, round fired after a

preceding hit, etc.) as long as

(a) the process makes transitions at distinct points

in time (shell arrivals in the example);



I
(b) the probability of transitior to S., giv~ n one i n i

Sis is Iij which does not depend on kncwledge of

any hintory of the process;

(c) given an entry into S. and the neyt transition

from Si to Si, the length of time in the inL,-,val

from entry to exit is a rardo.,m variable distributed

as Tip which may depend on the states S. a.Id S but

is not influencrd by further knowledge -' the proce-

history. Th4.s random ti-te interval has a 'irite

inean, mij;

(a) the process starts in S, (finished with les: engagement,

starting new one) and terminates with an entry to

S, ; ar

(e) every state has gnme probability of eventually occut-

ring.

In ewsence, the techn-4ue is applicable icr any continued

firing.process whickh may be modeled as a semi-Mark-ov process.

We first define

and fi. the Markev-chain steady-state frequencies, as t:,e so½>...

Of

.22

1The mea*,i.g and propertieE of the steady-state frequer.cies er.
diacussed in any book oa s-r.chatic proesues or Markov chain,'..
See, for instance, Parzan (1962), Kemerny and Spell (19612,
or Karlin (1966.



'Then from an 31lementary theorem of Markov renewal theory, 2

-w r.now that

E(T) = M f. M

As a-•x c;.ample of the use of this method, let vs consider'

a generalized version of the ".idrrkov fire" ease treated in

-.Iapter 2. Let

S -• rte preceding first round at new target after
termination of an engagement 9

32 state after a hit (which did not kill) on current
target,

S 3 : state after a miss (which did not kill) on current

target,

u probability of a hit after a precedingt hit,

p probability of a hit after a preceding miss,

P :probability of a hit on the first rou-nd,

HH= probalility that a hit after a hit kills the target,

SHM probability that a hit after .,a miss kills the targ.et-,

4F P'robability that a hit on first routid kills the taraet.

= probability -that a miss after a hit kills the target,

= probability that a miss after a miss kills the targit,

M, : probability that a miss on.the first% .oiind kills the

target.

Then we have

'This is theorew 5.16 in Ross (1970) and theorem 6.12 in Cinlar
(1969).
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I
pl P0H1 + ( - P1 )MI,

(PIl - HI),

P13 = (1 - P1)(i- M1 ),

P 2 1 = UHH + (I - U)MH,

P22 = u(l H-),

P 2 3 =( - u)(l - MH ),

P3 1 = pHM + (1 - p)MM,

P32 = p(l - HM)%
P 3 3 =( - p)(l - MM).

N

We will assume the distributions 'ij or the composite PijFij3=1

are available, and that the m. have been determined.1 Now,

solving the steady-state equation gives2

fl 1 (1 + a 2 + a3)'

f 2 :a 2/(M + a 2 + a 3 )

f3 + a2 + a 3 )

whcre

a 2  (P 3 2 (1 - Pll) + p 1 2P 3 1 )/(P 2 1P 3 2 + (1 - P 2 2 )P 3 1 )

3 ((1 - Pll)( - P 2 2 ) - p1 2 P 2 1 )/((l - P 2 2 )P 3 1 * P 2 1 P3 2 )

And finally ,

E(T) m. + a 2m2 + a 3m3 3 (1)

'Any data which determine the m are adequate; no particular
forms are required.

2 There are many alternative forms for this solution. This may
not be the most appropriate for computational purp,)ses.
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It may be noted that although independent data entries

(u,p,PlHHHM,HlMHMM,Ml,ml,m 2,m 3) are required to describe the

entire process, only 5 dimensions of freedom exist in the E(T)

expression (a 2 ,p 3,m1 l. 2,m 3 ). Further, a 2 and a 3 may be determined

from 6, not 9, expressions (pllP 1 2,P 21 ,P 22,P 31 ,P 3 2). Thus , 1
a data-generation and data-handling savings may result if some

of these compressed forms could be obtained to replace the

12 (or more,) if the F.. or m-n. are considered original dimensions.

It is clear that (1) could be rewritten to give an ex-

pression for E(T) in terms of the fundazental process parameters

by using the expressions for mi, i 2 , and m, The present form

is slightly more convenient for computational purposes, how-

ever.*
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I chapter 5

ANA-LETHALITY SYSTEMS

Robirt Gruhl and Robert Farrell

This chapter presents the development of a model to

predict the ittriton rate for one or more weapons classified
as ave-lethality- systems. System8r of this type usually

"five intor W a wi-thout knowledg of exact target loca-

t tw-.m4 4tay tacgets via fragmentation or some other
•areaA*thelity Aeiianism. A field artillery battery is an

U ox~l f this type of system and the m. s to dte:-z."nc
the Use ýate ,f desuroying an area target by the simultaneous

-- md se8quea•ti delivery of multiple *oapons in the battery.LLi The 4tzw. te model developed in this chapter

e-po. velto of -th** multivolley target coverage analysis

conducted by Hess (1968). Integral to his analysis (and thus,

the fomulas developed herein) are some specific "target

coverage functions" and "damage functions"; however, the
A approach used to develop the attrition-.rate model can readily

SConsider othar coverage and damage functions.

[ Becae of the reliance on target coverage methodology

and the uz. Qf Hess's specific assumptions and results, these
are briefly reviewed in Section 5.1. The attrition-rate model

is developed in Section b.2. The effect of changing target

iI-
lbm

. g

-I -e
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posture during a firing intmrva. is caftsidlwed -in , oties 65-3.

Section 5.4, containsa a disoussilm ovf-m *t•" em to aacco :t

for poss ible norzhomogeneouu dasife 24Vel. "it,"A the taaot,

area.

5.1 NuZltiotI ra. 72get CoPC,• *

Th3 target coverage prob3les osWe4 -Mo•eo for do-

termi.ning the damage to targets .nfliteo YW de•V.li '.y--i

one or more. indirect-fixe veampo . Usuaiay Aft .ppw*'

multivolley problem denotes 6ie tkh m . A vm)Ih

is the number of rounds fired f~, a p OE g lyo)o,

(f our to eight Lan P1*mg We ttm I's A'- 4 bio Em b

Of .eag. problem Uteratwe v* 1 | .t N' iiA

Terragno C1"11).

The multivolley c•verage ,•s lys.L ued in tfe de.vlop-

ment of the attrition-rate lm**de is g .ve .%y- 51 ( 416).-

Except for the damage patterin. ,.,,,-Meal, ,d, f-tor

the expected fraction of de 1 *e this -t bIs el it A

minimum set of general ass""t4wo. VW961"e AN se4.Cai

assumptions mome us4 'fo model v~i'~ftdot1@. gir4atin

and 00"nUtatidha1 purpasssa

t- -l :

-t .-.
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No delivery bias exists--no aiming error, target

I;locaton error, or intentional offset,

Centers of impact (xy) of the volley damage patterns

a re di3tributed about a mean center of impact (U.y)

."acording to the circular normal distribution. For
coavernince, we let (ijy) (0,0), o 1. The delivery

errozs is then

tbiyy (2n)- expl-(x 2 + y 2 )/2) . (1)

S. -~~~ar o t : .• -..
A cir'cle with radius Rt centered at the origin. Two,Ht
mathemAtIc*4y equivalent, targets are corsidered: -

a. A rcu . homogtneousaO- a target, centered
at tOij) Ar -fd R ad

b. A point target (4,n) of uniformly uncertain
location in the Area of radius Rt. Th* target
density function C •,s them .

• • _ -. adius Lot q(G,.1 x$y) be the,-damage function:

4t *se•: U*1 bon(O s SO at. a. c'mttl1• coverage

dOANS p{A yw ldo J* I re(ultd s * 1the cir.

"hIG fd variance tound

with e aisgu at er.4n ia fircun.a Heneu derived

radiust Wt aet d(~i*y be t. he dam ae fkunction ta hMp

ft[ ens~v ~4ta ic.lrcvrg
4* . • .~ov~hi *: .... e. - .p.:tayal.o..a
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where

A(rsn;x,y) is the jg'obobiliSty that iat bPelt I
(C~) will be killed byr a 6~mine pstte wi**U

impact at (xvy). DamaSG im. eutiU' ua~. owTi!h

(killed or- not kill.4)- -nQý VV36Ibd"4V4tM4Wn1

We proceed by jetting --

r =distance from 46i~) 40m

cen~ter Of impact (,O) 40 *xt

and r2  42 ,,2. ~ .]

P(R ,r) the pro~ability that a pceint twret ,)* .
p by a- damage- paftft'aVith Cato a 4. Aim y)U

[thi.s is also the pro~boUlt thMA* 1*4-

of impacts Sasbiet t~ b i@a
tic~n, Vall fall 4w*a: AL 4~14 ~ *
(CAi)] -

Then,

P(R ,r) ff aS-m y2 234"yv 44)

where C is the Circle U

The event that the Point, (i *VW' it' Vww -

Bernoulli random vsrUi@.0 ulekv. U
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C2LP * ,P{3 R)3k (4)

Ala *a the poj.*t ~!a&mfj c±9.

Jtbelmg - t-AmmtASAfe

ý. asvpog 7bw of -4iPNW (kUbiet valleys:

atIIý*ý -1 - (6

it t~g- jj y ymeatdqipated at

-T 
*
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Def ining - p

thenP (WD. - (D and the~ *~tmlpo~iiik

If :
VV

target

* ff .~ ~ k~vR)w)L d(



The targjet covorWee function is definod -as

G(k;vR VR) - 5,(k~vjRp,r)d~dn *(10)

1G(k;vPR t.IRt) i.. th* expected fzaction of target area covered

V k]eatyI tiaink in v volleys or the probability that apoint

-terg~ is ccoersed eusetly k times in v volleys by the damage

f fis the eape-Ctd f"ectio of dane %q 4 -ar ea target in v

Vollu~OYAO the pswabfti Lill thet apoin~t target of uncertain

I16-tation wihnthe tarmat we.* Ua ftmged Mkilled). Employing

~ ithe speci fie m~umptiqns; notedabdve, it can be shown that.

I ~ -?4=,r (12)
-S(

t-
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A large number of integrp.%ions are involved in the -

calculations of v Hess develop3d an approximation, f.7

to v by replacing G(k;v,RpRt) with

Q(k;v,RpRt) (-)[S 1 (R,,Rt) kEl - S1(RpRt)Vk (14)

where SI(R 9Rt) is the probability a target element is at

(&,i) and covered by the damage pattern, or the expected

fraction of the target covered by the dama4ge pattern in one.

volley. The resulting approximation is given by

f~ (1 -(1 )~k1Q( kv,Rp,,Rt)
k:O

XS V (15)

where SI(RpRt) is denoted by S1 6
A

The approximation f.. is subject. to large error if R orV pRt are ,.ot small relative to the circular probabla error, CEP

(radius of, a circle centered at the mean impact point containing

bO percent of the impact locations). A correction factor Cv

was devised by Hess which corrocts, for the basi: assumptions

above, the approximation 1., to within 1 percent of IV The

I,

I
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correction factor is given by

CF 1 - (v - dye -(v-2)6 (16)

The parameters V and 6 are charted by hess (1968, 1p. 212-21).

Thus, the corrected approximate expected fraction o, damage11>~ is

Fv =fvCFv

1i - SII V)v . (17)

5.2 The Attrvition Rate

F is depend'rnt on tie number of volleys, v. Assuming

a constant firinp rate, f, the corrected approximate txpe.tc-d

fraction of area target killed as a function of time, denoted

by *0 (t), is

l- [ - (1 - Asi). (18)

If N is the number of indi"pendenv and identically

distTibuted targets in the area at the b!ginning of •he time

!I

I,



[ 153

interval [0,t], the expected number 1 at t is

n(t) [i- M(t)N

The expected number at (t + T) is then

n(t + T) [li - (t + T)]N

Then

Sdn =11n(t + T) - n(t)
at ÷0- T

"r lim - *0 (t + T)]N - El - *c(t)]Np

(19)

C

= -NOCI(t) (1.9)

Comparing this expression with Ei] of Chapter 2, Part A,

for a single Red group (J -1) and only one firing Blue I

unit (m 1 i) suggeits thit the attrition rate for indireut-

fir,, area-lethality systems be taken as

OC= tN .(20)

1 This is based on the assumption that the probability mass
function of the number of survivors is binomial with paramet.•r
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A useful simplification of (10) for numerical evaluation

of the general combat equations is obtained if we use the

uncorrected approximate expected fraction of area target killed

in (20). That is, substitute

O(t) = 1 - (1 - XS1 )ft (21)

for c(t). Then

0(t) -f( - XS1 )ftln(1 - AS1 ) . (22)

But (i - XSI)ft is the fraction of area target not damaged,

and therefore,

ft -n(t)
.(. - AS1) . (23)

Substituting (23) into (22)9

• .. •,(t) = .•/~~~n(t).1. "n(-s).

Then,

,!t
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d- N f . ln(l - AS1

-n(t)f • ln(l - AS1) •

But -f 1n(1 - AS1 ) *(01) when 0(t) El - (1 - ASl) I
Therefore, the attrition of an area target due to-indirect fire

from one Blue firing unit is

dn

and

munoowected *(Dln(t) * (24)

This simpl.fied form of the attwition rate should be used

only when Hess's uncorrecteG approximation,

(t€) • x - (1 -,

is appropriate and the Interpretation of (23) oem be Siven to

(1 - AS: ) . It is depandent on the assumpt•in that the ta•sets

continuously uniforely distributed theoelves in the otarget.

area aad therefow. that the prabakbility of :n~t) Survrivors is
* V t

I
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binomial. In general, *(t) is a good approximation ifR

or when Rt< Oc R < a (where R is the radius of the lethal
tp p

effects circle, R~ is the radius of the target arnd a is the

standard deviation of the delivery error) or wh~en the number of

volleys, v c ft, it-small, e.g.,

f- *(t) is a good approximation to !for v < 10
-v v

when S1  .2183s X~ = .259 R 1 CEP, Rt 2 CEP

fsee eHess, 1968, p. 88 )

*Returning to the basic attrition rate (equatio~n 20),-

c *l(t af ). 1 - )ftlil -(ft l)ye- ft-2)6 (25)

fye(ft-2)6 - t 1)-( - ft

E(tt M 3. -n !C1 - 16. - Uft - Y44

I . Mf - AS )ft 3I3 X9

At42tW S*4 £1A bM"L uanp~Attomm UplyAAg (22) _and letting

fto 4~.ft.)~ ( ft - 1) -(1:m X S)t

jj* f 2IA S3 .ý I *rlt -1ý)3 (26)
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1]

Thus, the attrition rate using the ooxwietod aproximae I

expected fraction of damage to an area twget is

a z Lc'(t) + *'(t)3N . (26)

S.* S Dtfrfwawr ?evve* Poe tnes

Th*~ basic model aswuis that the taws&I ~ t

-!

does not change during a volloy attaok UMueU %. -•±1J 'kCti

target elements (e.g., personnel) -- tsually "'e " to &m attaek

by obanging location az/iw/ patmi p toiowt _0 _06b vtti

vulnerability. In this ,4&_oft opo

target posUw" Cpe.(. 'Oft ~* 4
.foxhole). following Hess'.4 aurw41YOU "d *Kdv "

uncorrected attrition rates

X poba of k11 " . L
- 1  tte .W~pliI 77 fl~~e e~

vi ..'s oww".on"4 •... of . .-..-" t " not..1.

isiIh hpauamý*l
[,avaAMk



Then the -un co ,ec'teda pwoximate proba)ility of kill in v

-volleys, fvq to a point target of unccrtain location within

theharea (or the fraction of damags to an &rea target) is

S(ftss 1968, p. 94)

"fv 1 R U (i S (27)

Iri o altemrltively

1 El = I (28)

X(v) W t oe WejA /:e w b lity of kL11 given

US v t~iw
* 31 Ji( -)~~(29)

L. et v a ft ln,(21) and (29) and vi ft 1- in (281), where

-

-. . .

S" . . , , 
t

,-"I



Thus,

IF(1

-7'

Where f~):)f)1 adht'f.bs

* c-i- t~bt) r,kitty
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Lot t1 a& _-gwhere 0 < 1._ 1 is the fzctiodn of the

734 -totla fljr'ag1 ttuw, the target spens, in poetize, 1. Then,

-~~ Act ' (- ApI

Thwu. frut) a a a0t) - *. Therefore, from (30)

44411

LK

If : •' .. :•.: . .. t . S. .gi t-..

"n '04 A ft ~

4k 4 ~

ie 7

..; 4..

4- "..Y4, M4 :-

• . t..-i:-. ... 4 - ; - :'. r;' ;+ <. f....fi j'. 4 -. .- ; - -.•- : :' . " " . .+ - _ - . ".



- -target. 45M4 WeaPOll 00OUbiPtiI aa&S@ t ~£gin1~

target areac . ,a target elsaww LO not we *3m~inWb1*

- ~ in cue.- part of the wae target tbli spotmK), 30 VMS 00"AA

we show how the mod~el can -be eatuacd4 to imiiudg9' ".~'In#g daII

of vmalnerabi1±ty in- t1e area *ith- v2oslit tc 4be twget- typ*.

The basic asea~ptions fOr'0 teSutM isii 00 SW~l? tO -1

-t21e proviouls -4"*S10Pdt uSp

A~~- --NO ~ l W O A

.60 -pi 
i10-4"oas*1

-JA one *Gemivcixos as tim Othe WM OI~ mprIS6.0th taw"~ iaee

0~*40 .t a, iigt QAeMe*SA

cK the evof -W $*O l4meat SA 4o~44: ~41Y

A1athe eve"t (h) sLaSegt wej(



!PDI~k A) :1- 1 - (3)

P(DICk A2) 1 (1 x 2) k

I Since the probability of Ck is given by (4) and

i.Pf)) .A4 (36)

Li

Cit N)

II

L e t ..f D Vr. b e t h i e a m if In 10 V l l ~ a t
3 .a

.:: . ) (

Iki

I I '

I . ... . -. . " -%-

. • 3..



160

and

v

P(Dv• A2 ) : Pr{D Ck A2)

2 i-1 Pkpr]- 1-( ~ ~ .k=11
[.-l TR ' r)JV3 C p -

Since the events A1 and A2 are mutually exclusive for a single

target in the total area A,

P(D~ A) :(2 2)" 1  £PRU* O

SL - P(R,1

* [1 - (1 - A +i + El 1 -

Sv-k
t E.R -E P(Ivtr)1 -

and
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P(D) ta!2GR41~~O v,Rp,r)

target k= 1

V

(I k idd

J lr,~ l A 2k k

k--1

ff (wR.)I g(k;vP. ,r)dFdnj. (3.,)

target

The double integral in (39) is the target cover-ag; function

G(k;vR 9Rt) givcn by (10) which, as an approximation, can be

replaced by Q(k;vRpRt) given by (14). Analogous to the

previous development this leads tu tho- uncorrected approximate

expected fraction damage fv 1"

v

V
Jcul

V

k• ( ')cs1 1 _ A2 •( . S-

, • -XA- S)' + ( - A2sV ()

!.
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Equation 40 can be used directly as *(t) to estimate th.

attrition rate with the uncorrected approximate expected fraction

damage.

By induction, the analysis of this section can be extended

to m different damage levels associated with m equal partitions

of the target circle. This results in the approximation

m
fv (= X - m (- v .(41)
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PART C

HOMOGENEOUS-FORCE DIFFERENTIAL MODELS



The basic structure assumed to describe the combat ac-

tivity was given in Part A by the coupled sets of differen-

tial equations

dn. "E A1 (r)00 for a 1,2,...,J , (1]

- B (Orn, for £i 1,2,...,I . [2]

The preceding part of the report described methods that have

been developed to predict the principal input to these equa-

tions--the attrition rate. This and the next part of the

report present results of research that has been directed

to obtaining solutions for the above equations, where a

solution is taken to be the trajectory of surviving forces

of each group dvring the battle as a function of basic inputs

and initial numbers of forces.

Ideally, it would be desirable to have the solutions in

simple, closed form which would readily portray the relation-

ship between the independent factors of the combat process

and the surviving numbers of forces. This wotild facilitate

1Logistics and locations of survivors can also be determined
as part of the solution, but are omitted in this discussion.

PP1
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both sensitivity analysis and determination of those nde- I

pendent variables which significantly contribute to combat i

effectiveness. Attempts to obtain such closed-form solutions

have focused on simplified cases of the combat equations .

in order to obtain some insight into the Solution proce-

dures and problems related thereto. These simplified cases

include (a) homogeneous-force battles (one group on each side)

which are described in this part of the reort, 644 (b) constant-

coefficient, heterogeneous-force battles whioh aP #*Wibed

in Part D.

Chapter 1 coniiders the cas. of coznstant atlri Rom tA i.

for both the Red and Blue weapons. Chapter 2 pws.ess two

solution to a special case of variable attrit-M !afte in .hteb

their ratio is a oonstant-, The effect of moort , j.

this condition is examined in Chapter 3. Cb"tr i ,4 Poents

some approximation results for general varible attrition

rates in homogeneous-forcs battles. Analog sclution8 for

linear attrition-rate functions &n presvitent i ChaMtor 5.

Analytic solutions for a hypothetical fi're-suppo't situation

with variable attrition rates are given in Chapter 6.

ii

I:
ii
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Chapter 1

CONSTANT ATTRITION-RATE MODEL

•K Seth Bonder

- In this chapter we consider the simplest homogeneous-

force battle model in which the attrition rates are constant

and the intelligence coefficients are unity.1 The constancy

of the attrition rates in3icates that they are neither functions

of battle time nor range between weapon and target groups.

i j; Since thero is only one group on each sides the allocation

fotor is also equal to unity for each force.

These assuptions reduce-the heterogeneous-force battle

equation, to

•= -0n (4)

if the attrition rates art also not functions of the number

of surviving targets and
5

000)

r. 40"m b patdin this vepor- has oonsidered unity

"""l 41" =*-UmAra I

* i~nteltges~eoefticienta.

[I
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when both sides employ- area-lethality weap-ns, The attrition

ratei in (5) and- (b), (WAe) and - A00) refleet the dependency

of the uncorrected -area-lethaity attrition rat" d*eelope& in

(B,5.0] on the number of survivi4n toots wtphe#e, notationally,

QA and $A are given by 4'(0) of that chapter.

Equations 3 to 6 are the classical combat formulations

of F. W. Lanchester (1916). Equations 3 and 4 comprise the

more familior "modern combat" desription in which it is

assumed that combat takes place at close quart -such that

each unit may take any enemy unit under fire And, having V

killed that enemy unit, shifts its fire to another enemy

unit. Combatants whose wean systems have a.ttwiton rates

classified:as impact lethality (,see ES&. 2-014. ad

are oonstbant througokut the battte, would be aemtestent

with this formulation. This description aI Q Y a5IP

sumes that units on either side are within weapon r**Co of

all enemy units and that fire is distributed uniformly over

remaining units.

The solution of equations 3 and 4. with the: tie• variable

removed--called the state solution-is obtained by dividing

(3) by .(4), integrating, and employing the initial force

size conditions that, at t 0 $, n * N and . a M. This

The attrition rates for area lethality eystsw are the only
ones developed to date which are state 60p ext. Adcor$tn.g-ý

ly the gtte dos iition given by (SY) an (A)4is tte.by
state-depondent att t ion-r•ato cae * e this r• p t•l

Other hypothesired state-depoeld t desiLptiLon& arfe MIAm-

marized by Dolanskj (196").
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160" to-- cef t, that

I(M2 -i m 2) BIN2 -n),(7

2 2 2 2~
%( M m BN n(7

i which is inv~ia( thoruhout the battle. Thus, for any

dspecified number of surviving Red units, we candetermine the
associated number of surviving Blue units. For,. examples

if the Rod fonce is anihilted (n x 0)9 hen

S2 . o2 2.. 2wo

which indic-ates that Bl~O. will have sove surviving units if

I~i • 0•M2 •N2()

i"-l-N'1£t 11 plj" thba Blue will win the battes

• -:.: h* cor~ondt•,

-U•T~pia•a &-v (Rod ansd Blue- force* approach zero simul-

UtanOuSly). Le t).r ga0.led this condition an equality of

J4*~,et~~t a4 im* it. is proportior~Al to the

"vr sqa.Of VIN for"e $I"* bas ben givAn the familiar MUSe

I
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"Lanchester's square la'." 1  This suggests that there eists

a definite advantage in concentrating forces. If the Slue

force has a weapon whose attrition rate is fouw ti"ss greater

than the Red force weapons, the Red force wilU -raquie only

twice the initial number of forces to have equal poteitial

of annihilating the Blue force.
2The time solution of this simplified description of F

combat is well known and readily obtained by substituting

(3) into the derivative of (4) and solving the resulting

second-oxd044 constait coefficient, diffeental "ation

under the initial conditions that n : N and a1 - M at t z 0

producing

n =N Cosh ra) n / M sinh (vol•t) (Ii)

and

m M cosh (/Gt) - • N si1h(V'•) • (12)

It is also a straightforward task to determine the time

lWeiss (1962) notes that Lanchester's square law was apparently
anticipated by Rear Admiral Bradley A. Fisk* as early as
1905. Fiske stated that (Robison, 1942): "The deicrwse in
offensive power of a weaker fleet fighting a stronger is
geometr1oal, instead ot arithmetical, ane. that there is a

continually increasing difference between the powers of two
fleets as an action progresses which favors the stronger
fleet." This is the effect of concentration described by
Lanchester's equations. Although Piske qualitatively described
this phenomena, Lanchester was the first to foumal.st it
in quantitative terms.

2 Number of surviving Red and Slue units as a function of,
battle time.
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(C) req~ired for the ith side to be completely annihilated

as tho mmn - w-eo

T. 0 x tanh- To (13)

T m 1tanh 1 /o7"" (14)
((14

SThese are derived from equations 11 and 12 by setting the left-

hand s9.de equal to zero and solving for the appropriate

Equations 5 and 6 contain state-dependent attrition

rates derived in [B$ 5.0] for weapon systems that use area--

lethality *schanzims. The implied assumptions are (a) the

t e"4ta 4we i aifotmly randomly distributed after each volley

of fi, Wb) each unit knows the general area in which

' enexy unite are located but not the consequences of its own

fire, and (c) fire from the surviving forces is distributed

uniformly over the area in which the enemy forces are lo-

oated. In the literature equations 5 and 6 are known as

Lanoheoter's linear law formulation.

The state solution is obtained by dividing (5) by (6),

integrating, and employing the initial conditions that at

t O, N and m M

• a~~~~~~A(M-) A -n),()'4-

t J
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which is invariant throughout the battle. If the Red force

is annihilated, the associated number of Blue survivors

15

r A- & AN , (16)

which is p,-sitive if

aAM > 0 A1 N (17)

Thus the condition

cAM BAN (18

implies that both furces wilL a',proach zero simul-ianeously

if the battle is described wy equationc 5 and 6. This

formulation suggests that a force's fighting Strength is

proportional to the fo•,ce size, giving rise to the name

"Lanchester's linear law-"

The solution for the number of surviving forces as a

function of tirae is obtained by solvi•;g (15) for SAm and

substituting this quantity into (CS producing

-(Kn (19)

where K -- (AM - . Integrating (19),

-log 1 + K(-t + C), (20)

t __ _______ ________ ___ ______ ___A
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I
where C is an arbitrary constant evaluted by the initial con-

Idition that n = N at t = 0.

If (1 + K ) > 0, from '20)
An

SC- - logL' + o. ] (21"

If (U + K) < 0

~i I KC 1 1og[-(, + (22)

Substit'•.ing either (21) or (22) into (20),

!, tI K 1

.-. Ii

F3 .

Swhr. * • SAMl$Ah. Substituting (23) into the state solution~

S(15~) and solving,

+

olo
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M M( - 1) (24).
-= _SAN(0_I)t

The parameter i is associated with the state solution and

expresses the initial advantage of the Blue force over the

Red force. This is shown by the ratio

n -= A N(0)t (25)
in M

which indicates that the Blue force will annihilate the Red

force when ýl>i and will be annihilated when 0 < 1.

1.1 Reerenoes
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Chapter 2

VARIABLE ATTRITION RATES, CONSTANT RATIO MODEL

Seth Bonder and Robert Farrell

In the previous chapter we considered tne most straight-

forward simplification of the basic combat structure--

homogeneous forces with constant attrition rates, i.e.,

attrition rates that are not dependent on battle time or

range between the firing weapon and target. Thus the

attrition-rate functions (see [B, 1.2 and 1.3)) are constant

throughout the battle.

Except for the unlikely situation when neither combatant

moves during the course of the battle, the assumption of

constant attrition rates is highly unrealistic. Consideration

of the acquisition, accuracy, timing, and lethality chdrac-

teristics explicitly included in the attrition-rate prediction

models [B] strongly suggests that the attrition rates would

vary with changes in force separation. In this and Chapter

3 we shall consider the effect of this variation in the

homogeneous-force battle mIodel with the restriction that the

ratio of the attrition-rate functions,a(r)/8(r), is constant. 1

This restriztion is imposed for analytical purposes in that

it facilitates workable closed form solutions that provide

some insights into the affecL of maneuver in a battle.

"The results of the previous chapter will, of course, be a
special case of those developed in this one, since the ratio
of constant attrition rates is also constant.



176

2.1 Battlefield Coordinate System

As previously noted, the atti'ition rates will vary when

either or both of combatants pse mobile weapon systems. The

movement of units can be implicitly considered by retaining

the battle time dependency in the combat equations or

explicitly by converting to a range dependency. Knowledge

of the movement schedule provides a one-to-one correspondence

between time and range (force separation) during the battle

so that they can be, and are, used interchangeably. Use

of the range dimension requires the establishment of a

coordinate system for the battlefield.

Consider the simplified one-dimensional coordinate system

depicted in Figure 1.

n force (Red) m force (Blue)

m
_Sn - r

v n vm

Figure 1. Plan View of Terrain

The distances sn and sm are the ranges of the Red and Blue

lines, respectively, from a common reference axis. The range

between forces at any point in time is denoted by the symbol r.

The respective velocities of the Red and Blue force are. vn and
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Svm. From the geometry of the figure

,r sm -Sn sm >sn (1)

and

dr dsm ds n
- - dt

or

v :vm - v , (2)

where v is the relative velocity between the Red and Blue

forces. An examination of (2) and Figure 1 will indicate that

the differential dr has the same sign as v and, accordingly,

the type of engagement to be analyzed depends on the values of

vm and vn. In a meeting engagement vn > 0 and vm < 0

with a resulting rapid decrease in force separation. For

an attack engagement v n= 0 and vm 0. The conditions for a

retrograde operation are vn > 0 and vm > 0. If vn > vm, the

range between forces will decrease as the Blue force with-

draws. If Vrn < vm, the force separation will continuously

increase. When v = v in the retrograde operation, we have

the situation described by Weiss (1957) in which the bat-

tlefield shifts but the force separation remains constants

i.e., dr/dt z v = 0.

The attrition of forces in this homogeneous-force battle

model is described by the same equations used in the previous

chapter except for the explicit dependency of the attrition

1 Engegemente are described with the Blue force as reference.
That is, an attack engagement considers the Blue force
advancing and the Red force defending.
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rates on range. Thus

dn -(~ 3(3)

and

dm= -8(r)n ,(4)

where the Blue and Red weapon attrition rates, a(r) and 8(r),

respectively, are nuw aenoted as functions of the force

separation r, i.e., the attrition-rate functions. For clar-

ity, however, we shall omit the functional notation throughout

most of the developments where omission will not be mis-

leading.

Equations 3 and 4 are used directly in the next sec-

tion to obtain solutions for the case in which a(r)/l(r)

is a constant. Explicit range dependency and mobility

considerations for the general case in which 0 (r)/O (r) is not

constant are.added to the description of combat by trans-

forming (3) and (4) from the time to the space domain.

From (3)

dmdr 4.Mdo dr1
. N dt Z' '
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I , therefore,i ~ ~d2n o
In v dm + v md . (5)

We also ncte that

dn dn (6)

and

Sdm V dm (7)

"Differentiating (5),

d2 n d (dn)(dr\ + dn dv dr

dt r r r Trrr

;-2 Urv dn

2 2 d 2 n + dn
dry T

ddv

where w : v dv is the relative acceleration between forces.

Equating (5) and (8), employing (3), (4), (6), and (7), and

rearranging,

2d-•n+ • ot dn ( :O o. (9)

-r
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Analogously,

d m I dld 0. (10)
dr2 '2 0d Ir -j

Equations 9 and lu can be used to describe a wide vari-

ety of homogeneous-force combat situations. If w 0, the

equations describe constant-speed engagements. As noted on

page 3, the different possible values for v = (v - v n)-

facilitates describing attack, defense, meeting, and delay

engagements, and retrograde operations. Different weapons

are considered in terms of the attrition-rate functions

a(r) and 8(r)

The next section of this chapter presents the general

time and range solutions to the structure given by equations

1 and 2 and analyze, the effect of a constant assault

speed (w a 0) using linear attrition-rate functions for the

Red and Blue weapon systems.

2.2 Time and Range SoZutione1

Consider a re-write of equations 1 and 2 in which we

denote tho attri'dion-rate functions as Ounctionm of battle

time

dn --]• - G(t)m (1i)

'The general solutions de&cribed in this section were first
preserted to the Operations Analysis Techniques working group
.t the 23rd Military Operations Research Symposium, West Point,
New York, J-ine 1969. Solutions to special caies were reported
by Bonder (1965).



and

dm -O(t)n .(12)

We explicitly note the requircment for constancy of the ratio

of attrition rates as

C ~:8(0) _ _ o(3
c== r 9- (13)

0

wheoe

%(O)j[0(0)] = The Blue [Red] weapon attrition rate
when the battle begins at t 0 o,

oO(0o] = The Blue [Red] weapon attrition
rate when the force auparation

r:O.

Letting

ft
x z Lu()d¶ (14)

and substituting dx/dt into (11) and (12)

dn -M (15)

S-cn . (16)
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These are coupled, constant coefficient, differential

equations whose solution, using the boundary conditions

dn.I
n(O) N, m (0) M. and 3.i x=0o -M, is given as

n(x) N cosh (-j/x) - M i sinh (/-Cx) (17)

and

ne(x) M cosh (UEc) - /- N sinh (/Ix) * (18)

Rewriting,

x i(r)dT MT a(T)d t (19)

-a-T t,

where T is the time average of the attrition-rate function.

Substituting for x in (17) and (18)s

n(t) - N cosh [1=FMTt] - M K sinh [/-Ta7t] (20)

and

m(t) M H cl sh V(c --Tt] - /'EN sinh [/'-t]tJ. (21)

If we cot.,ider a constant-speed Blue attack engagement

against a fixed Red defense, i.e., v 0, then v - vm is

negative and



= - (22)

where

R range at which the battle is initiated.

0

Thus, the range average of the attrition-rate function from

the beginning of the battle to range r can be written as

- f r ds) v

0

1
- - f de (23)

Ro

Note that ct(r) is also positive for r > R and is assumed

independent of the assault speed,

With this transformation, the sarviving forces as a

function Pf range to the defenled position is given directly

as

n(r) =N aoosh (0(r)] + IM sinh [O(r)] (24)

and

m(r) M M cosh (9(r)] + /8"N ,inh (0(r)], (25)

I"
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where

((r) : r- (26)

is always a negaLive quantity since v < 0 and the other

terms are positive.

The state solution, in either the time or space domaivi,

is derived in the same manner as the constant attrition-

rate case (see page 168) and given by

o[M2- m2] 2 _o[2] - n2]. (27)

This is analogous to the classical Lanchester square law,

which implies that Blue would lose, i.e., be annihilated, if

2 2
aoM < 8N0 . (28)

The fallacy of this statement becomes apparent now

that we are considering explicit movement of one of the

forces. Recognition of the capability to move suggests we

consider an end of battle condition which is different f'com

complete annihilation of one force or a draw in which buth

torces tend to zero timultaneously. A force can counter

the lose or draw condition by using its mobility. This is

seen in the following discussion which cunsiders. specific

attr'iti-n rate functions for the Blue and Red weapon.



A"'.. •J' .Yue and Red forces are equipped with weapon

syste,.: t;-t chat

"r- (Re r) < r < Re

e

(29)

iK " - r) 0 < i < Ra e - - e

0 r > Re

and

- (Re - 0 r < ee• e

(0 r > R
e

K (Re - )0-< r -< Re (0

0 >)0 Re

"where

R. the range at which P weapon system fir5t
obtains a nonzer attritioa; r'ate

K [KC03 x slope of the Blue [PRed] weapon attvition-
rate function

These attrition-rate functions ave shown in riFure 2 along with

the starting range parameter for the battle.
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Figure 2 Constant-Ratio, Linear Attrition-Rate Functions

Using the Blue attrition-rate function for values of

R ReR

r

('r) r - K (Re- s) ds

0

2(R - r) [0.

2(Ro r) I(Re -r) 2 -2 -Re Ro2



a
SR• ) - R o

e 0'

(32)

Substituting (31) into (26) gives

0(r) FT [(Re - 2) 2 (Re - R°)2 (32)

and

n(r) = N cosh 6 + 1 M sinh 8£ (33)

n(r) = M cosh 0 + [J N sinh 0 . (34)

The subscript £ on e indicates it is the argument

for solutions (24) and (25) when linear attrition-rate func-

tions are appropriate.

With these solutions we can see the impact of mobility

by considering the range intervals such that units of the

Red and Blue forces survive. Setting n > 0 and solving for

in (33), thu range .cu. tn+ '"m Re(; If' e 16

R vS

r ah1 (e R(5



F

and from (24) the range interval for thi- Blue force is

!5

-2Re 1 YU°
r R - -e- tanh- + (R -R 2 (6)

We define R.i as the range at which the jth force has i sur-3
viving units. Examination of (35) and (36) will reveal that,

if /Vo M < /oN , then R° > R°, and consequently, the Bluem nl

force could be destroyed before they reached the Red force

defensive line. From (36)

/-2R v FM 23
R 2 =R e tanh. + (Re R o0 ) (7

0 0 N.T

and, if /$"aseN > Ame M,

0 e

R tanh 2 I- i ~(

>00

aR00 derassa spee inrase. heroe 1f th( e attack
-77
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were conducted with sufficient speed, the Blue, orce cou,

overrun the defended objective with some surviving aiiits.

This concept of using mobility to saturate the defending line

is examined at length ini Chapter 3.

2.3 Some Hiotorical Perspectives

Recognition of the capability of a force to move, and

consideration of end of battle conditions, adds, in a quanti-

tative manner, another dimension to the classical differential

theory of combat, vis, a force can attack with sufficient

speed t+ -:turatc an znemy's rta--1_tory capability. In ac-

cordance with the classical force-concentration principle,

the model indicates that attacking wit- sufficient speed and

superiority in numbers is an ideal means of rapidly saturating

an enemy's firepower. More importantly, the model suggests

that, in the absence of force superiority, an attack with ade-

qtiate speed is a means of conserving one's own force, i.e.,

get the enemy before he gets you.

Since it is difficult to conduct experiments during

military actions, dbouctions of this nature are hard to verify.

In addition, the unavailability of reliable empirical information

regarding past battles (Schroeder, 1963; Heimbold, 1964)

precludes quantitative comparison of the model in retrospect.

The concept of attacking with appreciable speed to saturate

an enemy's retaliatory capability does, however, appear to com-

pare favorably with military experience.



in diLcussinR tle offensive employment of tanks, General

Brýuce C. Clarke noted (1962):

Always use the maximum number of tanks practicable
in the assault. Move fast in the assault. Close
fast with the enemy. Fire tank machine guns on
the mcve. The tank casualties you will suffer
will vary as the amount of time it takes from the
line of departure to the objective. In a tank,
'speed is armor.' Thus the tank tracks,
if properly used, are both an offensive weapon and
a help in its protection.

During Woeld War II, Field Marshall Rommel frequently employed

panzer attacks against larger forces. This is noted by Al-

fred Gause, Rommel's chief of staff in North Africa (1958):

The general strength ratios "nd the supply situation
compelled RommeZ [italics mine] almost always to
attack numerically superior forces. Thus, in his
attack against Bir-Hachaim-Ain el Gazala positions,
where he sought to force a decision, he deliber-
ately opened the offensive on 27 May 1942 with
an adverse strength ratio of 6:9 in tanks.

The Sinai campaign (O'Ballance, 1959) describes small-unit en-

pagemonts in which the victorious Israelis conducted success-

ful attacks in the face of strongly entrenched Egyptian posi-

tions. This campaign represents the most recent, but by no

meanq h--i*or 4 c ily isolated, demonstration that saturp+4 nr eý*

an enemy's retaliatory capability by rapid assault is an impor-

tant factor in successful combat.
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Sic,%Ax. ,.R. 7') ATTTTTON-P.AT,, FUNCTIONS

W. P. (Cherrv and Seth Bonder

The previous chapter, presented a general solution to the

homogeneous-force, differential model of combat with

constant-ratio attrition-rate functions. Explicit consider-

ation of assault speed and force separation in a Blue force

attack engagement indicated that three outcomes are possible

in an engagement of this kind:

(I) Annihilation of either the attacker or defender,

(2) A draw in which both sides tend to zero simul-

taneously,

(3) The attacking force overruns the defended position.

In this chapter we shall examine the conditions under which

the third of these outcomes occurs and, in particular, study in

detail the effect that assault speed has on the battle results.

It is reasonable to conjecture that, if the defended

position is overrun, the ensuing ":lose-combat" battle

-e ocrurs at all) -11 no* ad. sP. " described by

our basic differential equation structure. Accordingly,

it is of interest to examine the impact that assault speed has

on indicators or measures of future success in taking the

defended position, where success implies winning the "close-

combat" battle at the defended position or having the
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defenders retreat before the objective is reached. The

measures considered in this analy is are the difference

(m - n) and ratio (m/n) of survivors when the attacking force

reaches the defended positior (r = 0). The iffect of as-

sault speed on other measures of success, such as the ratio

(m - n)/(m + n) at r = 0 or the ratio (m/n) at range r,

can be obtained by a directly analogous approach.

Before proceeding it is important to remember that the

analysis is based on having a constant ratio of attrition-

rate functions. Accordingly, the results should not be

interpreted in any absolute sense, lut rather to provide

some basic insight into the dynamics of combat.

3. 1 PreZiminarb ResuZta and Notations

In the preceding chapter we showed that the surviving

numbers of units as a function of for.ce separation was

given by

n(r) = N cosh [0(r)] + M sinh [6(r)] (i)

and

m(r) = M corh [O(r)] + Vc N sinh [6(r)] , (2)

where

0(r) V/C--(r v-r)(3)

c = (r)l (r) = oI /ao



"(R f a(s) ds (4)

R
0

At r 0

n(O) = N cosh (00) + -A- M sinh ( 00) (5)

m(0) = M cosh ( 00e) + V7 N sinh (0) (6)

where

0 0(0)

(R\

- eV (8)

since, except for the assault spee~d, all. the terms on the

right-hand side of (7) are treated as constants in the analysis.

We note that 00 < 0 and that

8o _ /" •T•R°

v

V
0

A .- < 0 (9

We also have

v IrO [ IM sinh e0 + N cosh e 01 (10)



= .413/l 0° n a- (11)

by subt;titution of (1) and

I- rN zinh 0 + 4a M COSlI e = (12)

M W (13)

For the measures (m - n) and (m/n) at = 0 to I)e mean-

ingful, we must exclude cases in which m(0) < 0 and a(0) < 0.

For a < the assault speed which will result in

rn'0) 0 is obtained by setting (6) equal to zero and' solving

for

- m=0 -C

V -- -,(14)

tanh"' 
M

Sc - v •L Ro • IS
where

C 2

Analogously, if 0oM2 > oN 2, then n(O) 0 at

SVn=0 = -(16)

a MJ!arih

"L-M



Thus, the defended position will be overrun for assault

speeds -v > -vm= or -v > -v n=, which ever is appropriate.

Otcr concern in this analysis is the effect of assault speed

in these intervals.

3.2 PDfferent At-ri~ion-Rate Functione

Analysis in this chapter of the effect of assault speed

on the measures (n- n) and (m/n) at r a 0 is general in that

it can be applied if the ratio of the attrition-rate functions

is constant, independent of the shape of the individual attri-

tion rate functions. However, the magnitude of the speed

effects will vary when different attrition-rate functions are

used. In this section we list a number of attrition-rate

functions that have been specifically considered. The func-

tional shapes were suggested by examining the range variation

in predicted attrition rates for weapons with widely different

characteristics. 1  The constant Lanchester attrition rate is

also included.

"miis examination was made using arit.hmetic mean rates, E(y),
before it was shown that the appropriate neas rate to
use is the harmonic mean, 1/E(T)q as proven in LIB 1.23. Since

the reader is cautioned that other functional fomws may be
more appropriate.
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!
Linear:

ao

-(Re -r) r < Ree
a•(e) =(17)

0 
r> Re

-~ Rof(0)(R - s) ds

O2R R -R 2)(18)eo 0

e- 0

2 V OR (Re o Ro2

,-- -- (,19)
v

Quidratic:

0 r R

[e

e r'

rq
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R

f o 0
q q • (s) ds

0

1 2R e ( 2R° 3Re R + Ro0 (21)

R e
oe•

0 00• (3R 2R - 3ReR + R 3
q R 2v eo e 00e

-C (22)
v

Cosine:

00~
1- + coas •'r r < Re

a (r) = (23)

r> Re

ko

c'Mcc 0(s) do

0

o

0~ + i R ON

; V*S RO- , Siv 1111
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c (25)

Exponential:

- (R e-r)
- e

ae (r (26)

e

Roa(S)ds

e F

0
= ao - •°- I, (27)

9* -[ .-R i( j, ]
0 0 -Re '-()

V (28)

I "

• Ll ( 29)

,11

S[
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R
a L RL(S) dsRo

0

0

CLS--(31)
V

The surviving numbers of forces for some of the different

attrition-rate functions are compared in Figure 1. These

are obtained by direct substitution of the appropriate attrition-

rate function in (4), (4) into (3), and then (3) into (2)

and (1). The marked differences between the formaulations are

evident--especially between the variable attrition-rate form-

ulations and the Lanchaster constant attrition-rate one.

For example, the constant attrition-rate• solution predicts

annihilation of the Blue force at C0 Mseters vith two remain-

ing Red units, while use of quadratic attrition rate function

would predict ten Blue and four Red survivinrt unit. Au

shown in Figure 3 these diffternes, are reduoed when the. en-,.,-- r nat. (Ro, )
gagemein ragMR) is c~h Ies than the effete 4014e ovia

S% P.
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* the weapon (Re), and, in the limit as the weapon's effective

. range approaches infinity, the solutions converge to the one

with constant attrition-rate functions, ai(r). This obtains

since the differences in the solutions are solely dependent

on the form of O(r, and

Li Y(r) = Lim qCr) Lim 6 (r) Lim e (r) z OL(r)
Req- Re*W R e- Re L

It is of interest to point out that the large effect of

the assault speed (noted in the last chapter and in following

sections of this one) and the difference Re - Ro (noted abuve)

on the numbers of surviving forces may explain some of the

conflicting conclusions of studies to verify the classical

iLanwhester. theory via the correlation between observed and

theoretical attrition histories of battles. 1 If a battle were

fought without appreciable movement or if R were appreciably

less than Res observed attrition data might correlate with

predicted attrition of forces in a battle regardless of the

Ii particular weapon charaoteristics, i.e., attrition-rate fu'e-

tions. If, however, the forces employed moving weapons, and

Ito .Res failu to explicitly- consider specific variations in

* w*oan attrition rates with range mlght readily produce large

4ewiJdons betin ob"Oved and predcted force attrition.

4 to -V-

i i ZMN. •.a~b {;17),aH l~lat• 1962 )
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3. 3 The Difference (m - n) at the Defended Poaition

In this section we consider the difference (m - n) at

r -0 , which we denote as do0  For assault speeds -v < -vm'O

or -v <-v n0, as appropriate, d is a constant. This is

seen by considering a0M2 < *oN2. Then for -v <_-v Ma, m = 0

for some r > 0 and

nm=0 N cosh *+ AU7Ko M sinh * , (32)

where

*:-tanh1  (33)

is obtained by setting (2) equal to zero. This implies

that 00 - *, which is a constant. Thus, for -v < -vmWO

do= -nm 0o, which is a constant. Similarly, for ao122 -

and -v-vv< , d o zm ,which is a constant such that

0 na~O

M M cosh + Vg=*- N ilnh (34)

n*O a 0

where

is obtained bv setting (1; equal to zero. Thus, for

o ,-vo-vnO a, do/V 0. The value of d for

- -0
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this speed interval !j constant for all attrition-rat2 func-

tions and depends only on M, N, ae, 8o,

Substracting (5) from (6)

0 (00oN - oM)0
d 0 (M- N) cosh 8 + . sinh 0  • (36)

Setting d 0 0 implies

(M N) c osh (8°N " a°M)
"(14 N) cosh e 0 (-sinh eO) (37)

0 0

(M-
-tn o 0 00-tanh 8 - (B0 N -M)

00

and since e0 < 0,

(M N) A X,
0 < . < 1 (38)

MON %.)

Suppose (M N) 0, then ( 0oN -a ) > 0 and

(M- N)VT- oN - a ,
0 0 0 0

whioh Isplies a H2 < 0 N2 . Similarly, the assumption

that (N - N) < 0l plile that aoM2 > $ON2  Accordingly,

I'

,I~

i:
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d C for ( - N)(U N - a M) > " and
o0 0

M2  8N 2  if (M- N) > 0

oM2 > 8oN2 if (M- N) < 0

Thus, do - 0 for two sets of initial conditions

Condition I" Condition II:

-N) > 0 (M- N) < 0

coM-oN < J aoM" -BM > C (39)

0 0 00ao2 - 8N 2 <a 0 ao1?- 8N 2 > 0

The speed that results in do : 0 is obtained !rOm (36>

by

-m-n 
(4- •0)

tarnh 0-0r~~o

Consider the quantitY

o00
D a - C

N4- 0 0
0

v(8N 2  - a2)
0 N .0.. - (141)
/oN lin cm)

i ~~ ~ 0
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I
F So far we have considei.(d the cases in which J eoual';

e constant or m ) and d 0. We next exan:;inc the

sign of d when it is not a constanz, i.e., -v > -v oil

-V Mtac appropriate. Examination of (36) leads directly to:

I. If M N,

(i) BoN - •o 0 m - n 0.

(ii) BoN - coM < 0 --- '-m - n >i.

II.. If M > N,

(i) BoN - 0oM < '-- - > 0

(ii) 8oN - cM = 0->m - n > U.0 0 ,

III. If M < N9

Ui) SoN- o > o0 m -r < 0
0 0

(ii) 0 N- NM 0 =7;) - n '.< O0."

This leaves the following cases for consideral iat:i

It. � .4 and (BoN " - 0

(U) -2 to. >

t-i) aoH2 (< oN2

A o 0

JJ

1I
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V M < N and (0oN - ?o4) < 0

"i) • N2 > N2  "

(i < N

rXases rv(i) and I,(ii)

Consider Case IV(i). Suppose d0 < 0, then from (36) this

implies

(M - N) -
S(qN -oM) an 6

< 
-

(9 00 com
0<

(M N V T _,
0 < 00 0 0

(M -N) lý -C SON - oM,"

or

ro2 < 0oN2

which is counter to the assumption in this oane. Thus do 4 0

a,'d, by rt.ersing the inequality, it is easily shown that, in

i
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•I! fact, d > 0 for Case IV i. By a directly analogous argument

it can also be shown that do < 0 for Case VUII1.i0
Cases IV(ii) and V[i)

Both these cases lead to do 0 if v vm'n given by

(40). Consider IV(-,i)and suppose do < 0. From (36) this

implies

.6 0 tanh" 1 0 0

and

-v < -v

tar•"

For d > 0 it follows that
0

In an analogous fathion for Case V(J.) it can be shown that

do < i if -v ,,man

and

S!do 0 if -v <-man

_ "• Oit .. v

~ -f0

4&I



210

A summary of the effects of variations in M, N, a

o on d are shown in Table 1. The value of do depends on the
0 0-

signs of U V

Initial Conditions: - N

Linear Conditions: aoM - 0oN

Quadratic Conditions: a 0 M N.

0 2
The condition a M oN2 is also included in Table 1.

Substituting for M and N in (5) and (6), respectively,

n(O) N e-

and

m(O) K a •

For M 9 N)

d (M N)

Thus, d has the same sign as (M - N) and cannot be zero for
0

finite v.

Finally, we note that as v + .m, + MN- N. Tbis litti-

tively obvious result obtains from (36), vwh

limnd ( (N-N) lis cosh 0  M + - litin 0
V-0. v.-.t v.-.

V•- : H- -N•V~

00

sirnCe . -- C/v

..
- - •• . m mmmI
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Table 1 The Difference do As a Function of N,Na to,0

-M N-NM a •N (m n) at r: 0

-0 0

1 <0 0<0
>0 >0 >0

-r >0 >0 >0 >0

>0 0 >0 >0

-. >0 t0 >0 >0

<0 < - M

>0 <0 <0 <V

>0 >0 '0 ra0

<0 0 <0 <0

<0 >0 <0 <0

<0 >0 >0 0 -
I JC

, 0 0 0 a 0 V

>0 '0 0 >0

'0 _ > .0•0.

i<0
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which is positive for condition I in (39). Hence,

tanh1[/ ....a. , -2!7o , (42)

which, by comparing (14) to (40), imities

-vM=O < -vM=n (43)

Consideration of condition II in (39) analogouily'implies

_n-0 <_m~ n . - ( .

We note that for do 0, m n, 00 is fixed-, and from (5)

and (6)

m n M cosh (•) + 7 N sinh' M),-

= N cosh (0) + M.sinh (- .

where

1 t0. (6_)

Thus, the constant m-= n is independenit 6f the - f'orhof the , -

attrition-rate function.
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3.4 -The Der'ivativea .of d

In this section we examine the behavior of the derivatives
"" of d with respect to the assault speed v. From (.36)

I 0 Sa d o

0.0

0--sn (0o 0 + 0 0 cosh 8 (47)

' : 0 Set ihg 47)
Consider first the cases in which d' 0. Setin

equal to zero,

IM
-tanh 0° = (48)

(M- 00

- which impl. ,es

0 < soft < i *

>00

(O 1 
> 02

' ~B- O

0 0Y

, , 

.. <. o

t [ •I ,L 

, - ,'• • i" 
-'
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then from (49) this implies aoM2 > BoN2 . If
OM 0

(M - N) <O

8oN- 0 M < 0,

then this implies aoM < o2. N

Linploying (10) and_ (l1), d' can be writtei as
0

1 0-o 7 n (3, n w- (51)

and

2a d
0 a

-2 _, _-, a 2 -0

252

since .

V .4

2 2 4

For-the conditions specified by (49).,, M2 W> N2  . :0

and from Table 1, d > 0. Therefore, do" 0 whto , ii f es
0

that d is a minimum at the speed for which d' 0." In.....0 0
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directly analogous fashion, the conditions of (50) (and th'

42 - 0N) 0 has aimplied o4 < ) suggest that d < 0. Thus, do
0 0. O. 0h pe h eut

maximum at the speed f~or which do' 0 The speed which results

in dO' 0 is obtained by setting (47) equal to zero and solving

for

d'=0 C

00iN ,O (54)
-V~~ ~~~ 0 'O'M(g-tanh_18 -•

using tNh•-condition (49) or (60). It is shown in Appendix C, 3

that the limit of d' is zero as the-assault speed approaches
0

infinity whether or not do 0 for lower assault speeds.

Consider next the case in which d' A 0. Since

ae /av < 0, we have eiirectly from (47)

M" N 0

Ci •M- oN < 0 <= mn• 0
-- • am-n

-! ~~~~(i'-) o -o•; ' •00 0 a

(i.:) - M > m

o o-

M-N> 0

,I (ii) cx 0M-0 0• o . .o > m- n 0

-.0 o o- 0.

.> am-n

U4 M ' W
0 0
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"This leaves four cases for consideration. The first is

I. M-N>0

M -IoN < 0

SaoM 2 -8N 2 > 0

This is condition (49), Which leads to do' 0 for the Assault

speed given by (54). For d' <-0, (47) leads to

- v > C . .= - v (01

0 0
tanh'[-v(5

and for -v < -V 0 do' > 0. In a directly analogous fashion,

the case

II. - IN<

ml~ 0 N 0,. aol,12 - RN 2< Q

leads to .

d"0O
-v •-V, d'

.iv cs i => ddt" (0)-

This case is od•tion (, l

S.....6
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m- The :hird case is

III. M -N > 0

01oM - 0oN < 0

2 2N < 0

Consider (47) and suppose

0 •OM 0o

(M-N) sinh e° + B°N- cosh e < 0 • (56)

This implies

;X

K 0 < '<

2 2==> so2 < aOM

which is oantrary to the above assumption. Since the left

&Wa.: sa14 of (I51 is not equal-to xero under the state conditions,
2. it'ust be grte than zero. whirh implies that d' < 0, The

~avast b Qae teha r

I0

S- oK> 0

!>iv 2M
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is analyzed in a directly analogous way to Case III and implies

d' > 0.
0

The two conditions specified by (49) and (50) have

assault speeds such that do' 0. For (9) we have

given by (16). The difference

S N 0oN 0 Mo7
DI 0a 0 /c(H-N)

0 0

-To' BoMN - 0 Bo2 - / MN + oT HW

M(M - N)
0~ 0 0

(a 0M 
2 _ a B

U 0  N0) ->

AO. -(M - N 4 " >0

Therefore,

BN - M

N~0 0R 0o%- 0...
S( M - N )

ta1h [N /BO%]. ant 0 1

and

412-
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d'=C ni•0

In a similar fashion from (50), -v < -o , where -v

is given by (15).

Finally, we note thaT at d 0
0

m M cosh X + / N sinh X (58)
0 0

n N cosh X + 0M sinh X, (59)
0 0

where

l = - tanh• (60)
Xi

The constants in (50) are independent of the form of the at-

t ition-rate functions employed.

Table 2 summarizes the results of this and the previous

section. The different cases have been numbered to correspond

to the numerical examples given in Section 3.6.

ii

;t ...

I
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" i S~.5$ The Ratio m/n at, the Defended Position

Sn this section we consider the ratio mln at r =O which

we denote as p0 . The derivative

nam man
ap 0  - -

0 o T V- - 2
n

2 2 3e'

/0-_7._o r2  /- /0- m2  e

Po~

when (10) and (11) are employed. Since ae°/2v < 0, the con-

dition that p' > 0 implies (n - coin<0 at r= 0. Sub-

atitutin& (5) and (6) iint this condition

X *ooeh e -ý2 o NN l, nh 9each h +°M2 sinh2 e

-to X coh2 0 + 2 Mu ginh e cosh e + r O siGnhe

0 0' 00

002 Coa 24 sn 20 M,2 coo~h20 - sinh2O

$0 '++g; an Gin II %l 63t,u~# 2 <aN 2

.0 0
PO

i?-i

2 --

ii 1+
S. . . . . 'N
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and

P' < 0 S4BON2 > aoM2

These derivatives plus the fact that a do 0 implies P0 > 1

lead directly to the results found in Table 3...

3.6 Some Numerioal ExampZe-ULi.nsar Attrition-Rate Funceton&

This section presents a verbal description and some speci-

fic numerical examples to amplify the mathwwtn:cal] results

developed in Sections' 3 . 3 , 3.4, and 3.5. The,':examp eb emp~oy

linear attrition-rate functions from the Blue" and Red Vgapons4 1

The conditions considered correspond to the cages li6ted' in

Table 2 and are -riei-dally co-erned with situatinios in- "

whicbh the -Bl ue attack'force ov'u5the dfne o~o~

i.e., the assault speed is greater than some .critical s d.-'-d.

In overrunning the objctive' the attacwksra would, oi6 i

desire to do so with max.ýim dd z ( - n) adt r .cO, .. Sde

v < 0 and lvi is increAsing," v <0 and itis,, aadvat, us.....

for the attacking Blue fore. to have 'd•'-.-,qTh4s- ril es

that 3(m -n) >0 or that.,thf e ,inei.. ... In - surviv. ii

greater than the increase hn Red", survkVrSv .

-A
See Section 3.2 for the specitii at f
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'asei M N

CoM- 8oN < 0
0 01

aoM2 B 0oN2 < 0

Blue is linearly Tnferior and, coupled with the initial

equality, is quadratically inferior. For -v < -vmO the attack-

ing force is annihilated at sQme r > 0. For -v > -vm2O, Blue

overruns the Red defensive line, but is always inferior

(d < 0). Since d' < 0, Blue's inferiority decreases as the
0 0

attack speed increases. Minimum d0 occurs for -v < -vm=O

and increases to zero as speed increases.

'ase 2 M = N

coM -8N > 0

SsM 2 " B0N 2 > 0.

Blue has linear superiority and, coupled with the inirial

equality, is quadratically superior. For -v > -v0 Blue

has terminal superiority. Since do> 0, as the attacking force's

speed increases, its superiority at r = 0 decreases. -klaximum

superiority occurs for -v < ývn=O and decreasec toz oas speed

increases.



- -I- ..- --- - •-_ -

I . OdN. >

- - - - - - ' - - - - - ->- -0-

to) G H- 00N x -1-" (*3 %H- 80N sfl

In both oases Blue has quadratic su"eriority. Hence, for

-V--vn<0. the defending Red foroe is annihilated by Blue atI .
sake r 0 0. For -v > -nzO tei Blue force overruns the

€ j6aeouaive pocition, alays wvith te•minal superiority-, d0 > 0C.

In t1s case, d' > 0 andd do reasee as speed increases.
SX s d. ocomrs at -v- _-vn"'O wd decrease* t:o Nq N as

40 04 .. -_..

4ý A-T::. W . .,. ...,

w , 77ae..7
4 . ..-

A , -
.

l l... " ... .. ... .C r - .:
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That iv determines if' Blue -is terninrAi34I 230*1i.

eul-or-inferior. Minimum %(9 ouafi v~

The dif ference -do increases UL~ Mt N as speed irAci*as5 for i
myv> -v 0

Fiue3-.is a graph of d6 "Ai function of -eastapit apeed"1

f oo' speedifc values, of M, N, 4, 0 -g cotvespond!ing to -Case S

The linear attwitlon-41'te functton bas been tized with R

2000 Meters. The battle s~awts at 1 a 2000 mt. fe t

in- this situation, by appropriate chk o pmed. Blue -no

o'.aoids amnnidletiofl but alosrne 0s'o.lspIfty .

at r 0

- iws~and v g apbs 0% enW 4,OW * " Si"

7~,

tb..t is* dof 0 tf pdS tsý"i-t -~

of0indicaes, a rapid InwaMS4 'to 060. *POW

fo0 Výgw'-te 0~ w ý- 0.0

p-vi

for~e ailay bas termina3t .~~by 't,4 ~ ~ ~

Occurs--for "v v 0  nhistuta

- 4'

* ~~S .p*-~~- * 4'.v'--.-- 
~-

- -~*~S - 5l,
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not monotonically decrease to M - N, but has a minimum, after

which d increases to M - N.

O - C
[0

"' 0 for -v ... . .

tanh ' JM -e

Figures 6, 7, and 8 are graphs of do, do' and p, respectively,

in this situation. Note the minimum of d at v a -43.20 and 4-

the zero of d' at that speed which indicates that the sign of
0

the return changes from negative to positive at this point.

Cases 7 and 8 M - < 0

(7) M- oN 0 0

(S ) oM - oN 0 .
- 0N

In both situations Red has quadratic superiority. and

hence, for -v < -v M0, Blue will be annihil&ted at some r > 0.

Further, since do < 0 for -v >-vm , Blue is never terminally
0

superior. However, do' < 0 and thus this inferiority at r 0

decreases as speed increase s to M- N. Minimum d0 (<O) occurs
mTO

at -v< -V



13.0 M=20 N:10 M>N
0ox 0-M <)9N

g 0o =-.0 x t0-2
Re= 2000 meters a0 M2>/•0N2

12.5 RO- 2000 meters
n a 0 ma 12.25

12.0

11.0
0

t0.5

10.0

t-- J1 5 V i
0 !0 20 30 40 50

. Figure 6 Force Difference 4t r 0
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M= 20 N: Wi,
1.4 MLo =.4 O- M>N

/• 0 =.Ox 10-2
1.3 Re =2000 rnelers 4, 0MhQN

Ro 2000 motcrs
1.2

1.0

.9-
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adoT•" .7
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M 20 N 10 M'N

Re= 2000 meters oM2 >/%oN2

Ro= 20 meters

7-

6

oCL 5

4
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Case 9 M- N < 0

°M-"8°N > 0

0M 00oM 2 0 oN 2 > 0.

In this engagement, for -v < -vn=3 the Red defensive

force will be annihilated for some r > 0. In this case termi-

nal superiority depends on a critical speed since

Cd 0 for -v

do{O} {.<tanhw" ~ ~ F
OO -x 0oM

Here maximum d0 (>0) occurs for -v < -vn and Blue retains

terminal superiority so long as

-V < C

tanh[ O-N 0 M

As speed increases do decreases to M - N, and d.' > 0

rigures 9, 10, 11 depict do, d, and P respectively, for

this case. Note that in this situation it ie to the attacker's

advantage to proceed slowly.

Case 10 M -N < 0

S- B N > 0

a() -M 0.
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Under these condnit foni for -v < - the Bltue for'o'e will bq '

annihilated at some r > o. For -v > -v Bl", will overrun

the Red defensive position but will always be terminally i

inferior, d0 < 0. However, d' depends on v in the following

,manner:

d' for -v C
M N) o 01•

and d0 has a maximum at

oC

tanhl[ C ]I

LM-N) ir L
Minimum d (<0) occurs at -v < -MvM'0 , do increases to a max-

0 -

imum then decreases to M - N. These results are shown 4-

in Figures 12, 13, and 14.

Cases 11-18 aoM2 -8oN 2  0,

It was shown in Section 3.3 that in this case

0
" (H -(N-E °

and

Hence, if Blue har initial superiority, Blue has terminal

superiority ant as speed increases, do increases to H -N.

i~i: U
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Similarly, if Blue is initially inferio.-, Blue will not have

terminal superiority, d° 0 Ana ds speed increases do decreases

to M - N. If M = N, the for-ces are equal for all assault speeds.

3. 5 Ref- erc.r
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Appendix C, 3

THE LIMIT OF d' D(m - n)

0 a r:

WHEN SPEED APPROACHES INFINITY

J Peter Cherry

Tn Section 3.4 it was shown that

do' - M -N) sinh 0 + 3 Nosh -C h

Since 0 * 0 as v ÷ -w, the limit of d' is zero and the returnr."

from an increase in attack speed eventually must be diminishing.

The "return" is considered as the magnitude of the change Ado.

This is seen if we write do in the following forms:I0
If •aM( " %) (8N(8 -N1 [ -(N)2 9 0,

then

d ' D inh (0' + r

where I

D .(sign (H - N)j

A - N-

B - sN 0

B!

1The function sign (x) : r •r
1 V



taflhl[ ~HN

1f %i-;- N) 2 < (L M)? 2 a N 2

t h'r

d' = R cosh ( 00 + Le

where

R\ [sign (aoN - 0oM)] B- A'.

A M - N

0 N - aom

(M -N) o 1
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If 4 or 4 is negative, then the functions cosh (00 + 4)and

sinh (e0 + 0) are monotonic,decreasing as Ivj increases and,

hence, ldoi is monotonic,decreasing as Ivi increases.

Letting f(v) =d at assault speed v, then

If(v) - f(v 2 )l = If'(, )Ilv - v 2 1

If'(0)1 is monotonic, decreasing to zero, and then implies that the

"return" If(v') - f(v)l decreases for IvI increasing if

IV' - vI is held constant.

For the cases 4 > 0, 4i > 0 the above reasoning holds

only until 00 -€ or 4 and f'(0) = 0. In the case 0 > 0

we can argue that at 0 -0 , the function has a minimum

or maximum and from that point increases or decreases to

limit M - N as Ivi increases. Furthermore, this increase

or, decrease is monotonic since do 1) cosh (00 +0 ), > _¢

hence, while the "return" from an increase in attack speed

may increase, at some point, specifically where d" = 0,0

the return begins to. diminish and continues to do so thereafter.

In the case 0 > 0, d0 = R sinh (e° + 0) changes sign at

-- . Sinh (e0 + 0) is monotonic increasing with respect

to 0°. e .C is monotonic, increasing with respect to v as

IV I increases. The functic=n 00 moreover, has a decreas-

ing "return" as Iv I increases; hence, sinh (60 + 0) has a

decreasing return as iv I increases, i.e., all decreases, for

constant AIvI as Iv I increases, and AdO does not char.ge

Ib
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sign in this case.

If M- N = 0,

oN -oM

d -coshb ee

0 0

If 8oN - aoM 0,

d'0 :(M - N) sinh 0 y-0 "

In both these cases If'(0)I is strictly monotonic, decreasing

to zero, and the return = tAdo0 is diminishing with respect

to a constant increase in speed.

r



Chapter 4

VARIABLE ATTRITION RATES, ANALYTICAL RESULTS

Donald Ballou

Chapter 1 of this part of the report considered the case of

constant attrition rates for both the Red and Blue weapons.

Chapter 2 presented the solution to a special case of variable

attrition rates in which their ratio is a constant. The

"effect of mobility for this latter situation was examined in

Chapter 3. In this chapter we consider the general form of the

homogeneous-force zattle model with variable attrition rates1

dn c(r)
dm vr) m$

F = n (2)

and the case in which weapons on both sides have linear attri-

tion-rate functions:

-( r) r <R

ct(r) (3)

0 r > R

(r) = (4)
r > R

Notation used in this chapter corresponds to that employed
in previous ones.
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In the genetal case the assault speed v(r) is a positive fur:c-

tion of r and in the linear attrition-rate case is assumed

constant,

The general methods applied to the study of these differen-

tial equations are

(1) generation of a sequence of successive approximations

which converge to the solution of the equations,

each approximation of which may be generated from the

preceding approximation by elementary irathematical

operations (some analysis of error bounds is inclLrded);

(2) generation of a power series solution to the system

of differential equations;

(3) comparison techniques to generate expressions for

upper and lower bounds to the solution of the system

of equations; and

(4) quasi-linearization to obtain a solution fcr -he ra7iL

P = n//m as the maximum of a fairly complex integral

and algebraic expression.

Although none of these techniques has led to immediately useful

results, they have given rise to some limited insights and show

promise for more interesting results with further research.

The next four sections ar'e :Oevoted to presentini the results

ýi' these studies. They are presented in the order listed

abuve, which corre3ponds to our present underbtanding of their



J usefulness and promise. The results in each case are stated with

several of the proofs only outlined or omitted where their

developments are obvious or mathematically straightforward.

A discussion of the different approaches and an evaluation of

their relative strengths and weaknesses is presented in Sec-

"tion 4.5. Future research directions are discussed in Section

4.6 along with some thoughts on ways to enrich the present

results.

Clearly) applications of the solution functions are

meaningless if they are negative. However, from a mathematical

point of view negative values for the surviving numbers of

forces presents no difficulty, and hencein all the presentations

the functions n(r), m(r) are considered on the closed interval

([OR I regardless of their sign.
0

The following theorem is of a general nature and gives an

idea of the behavior of the zeros of the solution [n(r), m(r)]

to (1) and (2) on the interval [O,Ro).

t The ovem I

The solution functions n(r) and m(r) to (1) and (2)
can vanish at most once on [0,Ro). If either n(r) or m(r)

0
should vanish on [O,R 0 ), then tho other cannot. In
particular, n(r 1 ) a m(rl) 0, r.s[0,Ro), is impossible.

The proof is based on arguments concerning the sign of the

derivatives of n and m at any zero.

I
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4.1 Method of Succesoive Approximations

The first part of this section gives results for general

ca(r) and 8(r), while the second considers the case of linear

ca(r) and 8(r). In order to use the method of successive

approximations, the system of equations are rewritten in matrix

form:
d = A~r)$

(Ro)

where

0(r)

A(r) = (r)/v - (6)

(7)

Note that if * is continuous and satisfies

r
*(r) = ¶ . A(s)#(s) ds , (8)

0

then, since A is conti:auous,

dr (r) =AJ v(r)a(

"Th'. der-ivative

X2



j6 I,

g dn/dr
1

dr 'dm/dr/

i .. and ~1Iu r

ds (f iu1(s) ds)
• ,R 2 (sr

0 2(s) ds

0

with *(s) A(s)$(s). Thus a solution to our original equations

is a * satisfying (8).

The solution * may be obtained using the method of succes-

sive approximations. For this let

(r) (9)

anI define (jlr) recursively by

r

*j.~r) z • *f A(s)* (s) ds , j 01,2,.... (10)
" ~R

The following lemma is the key step in showing that the

seque4ce converges to a solution *.

Lemma: Let

* •' K(r) a + ds, 0 < r< R (11)
f v v - 0

r

So
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then

i: - -•<- IIl • 1-,2,3,...,

where

11 al ,,a 2) 11 jl + ja 21

The lenma is proved by fairly straightforward induction, using

integration by parts.

Theorem 2

The approximations *k given by (10) converge uniformly
to the solution * of (8) in the norm given by

H ~ "k1, 2) KI+21

That is, given c >0, there exists a k such that

Ink(r)- n(r)I + Imk(r) - m(r)j < c , 0 < r < R 0

where O(r) (n(r),m(r)) solves (1) and (2). Furth,-rmore,

],(r) - *(r)I < Vl(r) ,(2

where

M) (13)



This is a direct consequence of the lemma, using the power

series expansion of eX and the Cauchy convergence criterion.

Theorem 3
For each j, the maximum value on F O,Ro] for the

0

error bound (E.) on the approximation *j occurs at r

z 0. Furthermore, E (r) increases as r decreases.
This observation is proved from the positiveness of a,

0, and v.

The approximations k (r) are most easily expressed in terms

of the following quantities:

i .G .s) 8(s)
(f 2rds;

Ii 2 (r) = d(s; dsi21r) r If vls

-V 2 ..~ 1  d

R R 0r O" (S) (r r .O" (s) I (s) d
I121(r)~ ~~ = • I2(s) ds ; I1';=• ;"20 0

1 ( .) C1 (' ) 4 ; '2 1 2 (r) f I - ds121 v 21
2o

(a ds I (,J

11 2 1 2 (r f 212 ~ B 12121(r f v 1i) t

RI R

It should be clear how to define I() for any sequence of

l's and 2's with the l's and 2's alternating.

I



,'•:: .'Lnr, d(r), B(r), v > 0, and since r < Ro,

1 2 (r), 221(1), I,2  (r) 1 2 1 (r) > 0
LZ12 2 121 ' . .

"The,r,.&r 4

The approximation 4k(r) as given by (10) has the

form

k(r) k )/ -Dlk (14)

Nk + NI 2I(r) + +.. + (0)

where

N, k even

C

.. k odd

N, k odd

Dk
•M- k even

121 ... 121 'k odd

Sk k-integers

121 .212 k even

212 ... 212 k odd
t k = k-integers

212 121 k even

'hv [ 0± ofh transformnation is-by straig htforward induction.

r idutin
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I
Remark: The first several approximations are given bevlw

explicitly. The alternating nature of the approximat-ionm

is emphasized by introducing the absolute value of the inte-

grals:

n (r) N- M 1Ii(r)I

m72(r) =M - N I12 (r)I

n2(r) N - M 1(r)0 + N 1I1 2 (r)[

Mr2 (r) =M - N !12 (r)I +:4 1 21(•)I

n (r) N- M 111 (r)I + N II 2 (r)I - 1 M 1121(03 1
.m (r) M - N 1 2(r)1 +M 14 21(r) I N 1T212(01

A restatement of theorem 2 in these terms is as follows:

Theorem 5

The solutions n(r) and m(r) to (1) and (2) have the
alternating series representation:

n(r) N + MIl(r) + NI (r) + MI (r) + NI (r) +.

1 12 1.21 1212
(15)

m(r) M + NI 2 (r) + MI 2 1 (r) + NI 2 1 2(r) + M1 2 1 2 1 (r) +.

Foirther theorems which may be obtained by straightforward

manipulaticn include:



if '- 1 and R0 8(s) ds < 1

r 11

then for r fixed but arbitrary, 0 < r _< O

I12(rI > l12 (r)l > 11 21 (r)I > II1212¢(01 > ...

2" (0I > 11:¢ I 212€(r)I > iI 2121 W 1 > . .

(2) Theorem 7

Suppose R o -(s) ds < 1 and R o(s) ds < I

0 0

if M = N, then any of the following conditions guarantees

that n(r) vanishes on [0,R ):

(a) 1 + 11(0) * 112(0) < 0

(b) 1 + Ii(O) + T12 (O) + 1121(0) + 11212(0) < 0 ;

(c) I + 11(0) + 112(0) + 1121(0) * 11212(0) + T12171(0)

+ 1I121212 (0) <_ 0•

RcPark: The above conditions (a), (b), (c) get successive-

ly weaker, i.e., (a) implies (b) but (b) does not neces-

sarily implj (a), etc.
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Le k, 0< A < 1, be specified, and Iet r•, C r. J' .:
be given. If the parameters (a(r) S(:), N, M, v aire chcs-

en in such a way that

n((rr) Am (rI) (16)
I

then

In(rI) -ni(rI)I < E.(r 1 )

where E.(r) is given by (13) and (n(r), m(r)) is the sO-

lution to (1) and (2).

(4) Theorem 9

Let A > 0 be given and fix rc[0,Ro . Then n(r)

= Am(r) if, and only if,

N [I - I (S 1,,0 ,_.- 2 0 s

V - V . s 3 )a(S 2 )S(l 1 ) ) dS zd 3

+ -W ~ •S 4a0s 3m W( s- 2 )$(S1 )dS ds 2ds 3 ds4

V

4 ge0



M -. /' $(q) cs + (2)a(Sl)dS 2
v

o 0 0

rr

f-1f / J L(f s)as 3 )(s 2)d (sl)dslds2 ds 3 dS

V
0 o 0 0

+7 4. 31 2

For the remainder of this section we shall consider the

linca -it'-ition-rate functions given by (3) and (4) such that

R R< Re To simplify the approximations, we shall later

set Ro Rc a
In order to simplify the calculations, perform the

transformation

r - "r- r

Under this transformation equation 10, which recursivelv defines

the approximations, assumes the form

"A f (K, <

A<M W ,,, ),,,• , (S.)

k 0 k--o



where -F < (, a R - R R - R . he ap-
- ( 0 8

proximations n (r), n 2 (r),...,n 6 (r) are given expli`citly In

Appendix C, 4, 1. They are obtained from nk(r) by replacing r with

- Ro. It is easily seen that mk(r) is obtained from nk(r)
Vt

by replacing in nk(r), N with M, M with N, R with RBR

with R, K with Ka, K, with K

From theorem 2, we have two theorems:
L.

Theorem 10

SLet the parameters K , I , K , etc., be such that

[ any one of tha following conditions is satisfied. Then[ n(r) must vanish on (0,R0 ].

n (0) + El(0) < 0

n2 (0) + E2 (0) < 0 , (17)

F -n(0) + Et)< 1

Thev•e m 1.1

Let the parameters R, R, K,. etc., be chosen so
t-hat any one of the following conditions is satisfied.

' Then n(r) cannot vanish on E0,R R

4 nl(0) El(0) 0,

"n2(0) E2(0) > 0 , (18)"2 2

n3 (0) - (3 01) :0,

1:

I
3 1. , . • .:• ". .::: • • .• •i.:
S. . -""1;



whe•re

Ek (r ) (N + -,I) exp K(r ) K (r (19)

and

K(r) 1 (Ro r)[K(2R - r - R) + KO(2RB

(20)

- r -

The functions nk(r) are found in Appendix C, 4, 1.

The equations that follow give conditions under which

for specified X > 0,

n2 (O) A Xm2 (0) "

n4 (0) -Xm(O) ,

n6 (0) A Xm6 (O) ,

in the case R R (which implies. that R 0 andR R

.R ) These conditions are given below. They are obtained

by equating nk(r) with Amk(r)0 setting r 0 O, and rearrfanging

terms.

C'c,.d'~:~'., ,: n0 (O) . )..(0). (R : R - R.)
.. - n A : 0A

+ 4.

• .. ? . .. • ,,... :.:••:.•.-. ? , <•.• •. •:• • .•• ,, :. -. :v ...... .: .. '.:.:' . .. ! .: •.. .- ' p

-. ".. . .. .'.:.., .• L'" • '"4.:jJ• •p -.'•'" ••k• '-L.. . .,. '

S. .. . . ... 3] ." •** "• • •#••:`W ̀ ••*`. . `••`:•• • :`` ```:••. :% `G%•``:` b• :"*••'" " .. .. " : """"-p " "'" '" : - " / '



Condition 8: n 4 (0/ \) )

K KX ~R R 11-KK 2 R7  2K 8

2"' 2 4 2"'I 5
+ Ka Ra +11K, KRR. KaKaRa

3\ 4
+ aKa R0 +K1 a v ~2

+ iK R Ra+ 02a v +

X hK2K-R R 13-~K2K RS K a Rj

+ a +

18 18

3 44



c'ond'I"?n $: n 60) Am 6(01).

K" K R-R i*'KýKýR 2Rc1 211"K KsR K3" 3 1
N o + a. + aI 0a4 3.. 7 71. 2 5 ii. 7. 12. 4 8.6 '.

2 233 5-17-7 13-*101187

"3 7 ..7 2 3Kv2 ,. 8  K 2 K R R K2 K3R1 0

, 2 + ] 2 + + - v
2 .3 +7 24 32"5.7 27. 33.57 10"8"6"4"2

2 , 2 2~ '1- 7 2 28

SI X 2 • IK KSR V K K

(23"3"5 6"4"2

B a a t a a a R3

+ v 4  2
3. 2

-" I f, 25.3•.5 263. . s28"33"5"7"11 :2"15.* .6.'•.:

2 3 2 3 05 28 9 6 K32"
K KRR R 139 K"R KKR+ • 158 a + ÷ V

35 6•,o8,4*2

2~~~~ .3.6..!2..

"3 8 2KR

2S .. , 3. .,

3 5 2 3 5 *7 '28 33J 701

3 8 O 3 K9 9 2 l

K K' F 1 R KIK
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K 2KOOR K2 K51

30 48

XI K R• K K KR+ K R'
+ X + + a a + J V

Theorem 12

Let X satisfy 0 < X < 1. If the parameters K

KRa, Rp v, N, M are such that

(a) Condition A holds, then

1n(C) - Am(0)I < E2 (0) ;

(b) Condition B holds, then

In(O)-Xm(0)] < E4 (0) ;

"(o) Condition C holds, then

In(O)- .m(O)j < E6 (0)

, where E, is defined from (191.

* A r*estatement of theorem 9 gives

?heo2,eu 18
Leot x ) 0 be given, and fix rc[D,Ro). Then n(r)

. )a(r) if, and only if, the parameters 1,, K6 , 1,

v, N, M are.chosen so that, th following holds:



(P. - s2 )(R - S1 )dSldS 2... ds.

2j- if -ý "R2-.

: v2J-1 - s 2j..1)(R. - s2• 2 .
2sCR cdds )ds"(s d,

': ct 21-1

"b '"I

(R v 2 )(Rf s R)dSl'' ds 2

-. : v•2 jk J£-• (P• - s 1)(R0 - sj2''

00 0

(R - s )dS ds2...ds

, Il K r12]s

.' ,'," " - ,2 R - R-, R R - R0.

2' -(1 2



4. 2 Fcwcr-Scrrit' Al~&.w

As shown 'In Jiapter 2, ccns~deratiln Cc.'-ifl

un~der a constant: assault Bp~eed(-' O- - 0) -- be o':

to produ,-e the following second-ark-i'er ine& Y iture r2..I

equaticn for n(r)

d 2n Iidl n rB A()

subject to the initial conditicns n(R~)~ and

dra,R 2
- (22)

where v is a positive constant and a(r) and S(r) are nor-

negative functions on (0, R *. It is no,., ustful to assume

*(r), o(rhcCC((,R 0)A. This Cauchy probleyi. was studied F-:r t .c

linear attrition-rate fu.nctions gi~en k. ()and (k).

The bpezifiC- cs stueied astumed O F01< R Fand i,

Employing these attrition-rate f,,uct.lons, the Cauchy pil-t!..

.assumes the form

2K X (R -r)(R 0

n(R ):K

0c

C v*



C"'t (.~) 11,1 Siiig'11hn1i.ty '1t F 0 N O A solutiono a•

is ol:uln i At rc i eighaorhood of r R using thc method of

riclri.,ius (Coddinriton, 1955). The solution obtained by

nkr) c"P(r - R ) + c 9 y'(r - R ) , (25)± Oa a

where ( and c2 are delermineG so that (24) holds.

The functions

C - ) = + b.(r - R ) j+2

a j %
-o 1 ] o.(r

E3

The coefficients b. are given byJ

K2
b 0 1; b 0; b 2  0; b3 3

b K K2bj-3" K 1b j-4456 I I
b- j ,5,6...

where

KI K0 KO

K2  X K (R - R0)
2a
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2f() -2

while the coefficients a. are given byJ

dg.
a. - (

j dAi

where

gl 0; g 2 :G; g3 ýX) K2 /f(MA + 3);

KIA

4M f( + 4)

K d4 K d.
gY(x) 2 1(3-4 5+6•,7,....

Note that a power-series exransion can be obtained for m(r)

following the same procedure. The chief difference is that

the er'-an-icn will be around R rather than Ra

The Cauchy problem noted above can be converted to a

useful dimensionless form by letting

y = n/N (26)

x = mM (/'M)

y (R -r) K (28)

F (R•- Ra) 4K K/v (9

I
I
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Then

= 1dn

d-y NY

dr dn
dY dr

/-(R - r (30)

,ýYx

by letting - ,

dx 1dm. Idrdm

L

R + r)

It 1. -
VB &ffj
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IN v

R(RA + Y) Y

S(R + Y) y(31)

Thus, the s5lution to equations 1 and 2 with a constant assiult

speed and linea, attrition-rate functions car. be obt•ained from

the solution of (30) and (31) with initial conditions that, at

Y = 0 (r = Ro ), x = 1 and y = 1. The Cauchy problem is

obtained directly from (30) and (31). From (30)

which, when substituted in (31), becomes

'•f (Ra+ .)y•

Differentiating again,

) (R + Y y 0
'~dy

or

62
- - Y( Ydy
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which is readily solved by the method of rrobenius descrit,,d [
at the beginning of this section.

We note that the dimensionless parameters R and 0 cc.-

,1P'l•ey characterize the solution and can be used to show the

trade-off among relevant parameters. If we ascump, that N,

RV and K are given and fixed, and if the solution is to remainh

unnhAnged ( ,e. R and 0 are fixed2,, we must n-ive-- ..

/W M /F N 0

and

R :R

Thus we see how M, v, K , and R can be traded-off to obtain.

a specific final result.

4.3 Cornparitvon Techniques

One method of obtaining information about the solutions

n(r) and m(r) to (1) and (2) is to use comparison techniques..

Tc see the principle involved, consider the equations

d 2,,S+ R(r)w 0 , (33)
dr 4

--= + U,~z ('%4)

14Ai

Iii

: -- '""";
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The following theorem relates solutions of (33) and (34):

Theorem 14

Suppose w(r) is a solution to (33) and z(r) is a

solution to (34) which satisfy w(R0 ) < z(Ro) and w'(Ro)

i!> z'(Ro). If R(v) > Q(r) on [0,Ro], then z(r) > w(r),
so long as both functions are positive.

In order to apply this theorem First note that the second-

order differential equation 21 can be written in the fo.rm

£2

d2 n dn
7 + a 1 (r) T + ao0 r(n 0, (35)

where

a1(r) 1 da

ao(r) . •ar) ( (36)
2

Perfogm the transformation

a~ a(s) '
Swlr) . n(r) ex ds (37)

Lu to put (35) into the form (33), i.e., t luation 35 assumes

the. Rfrlw 0

"I -.

S.r
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where

(a(0r)]2 da1 (r)
R(r) 1 r) 2 .-1(r)

From (37) it follows that n(r) vanishes if, and only if,

w(r) vanishes. Thus. to determine where n(r) vanishes, it

suffices to determine where w(r) vanishes. But from theorem

14 it is seen that if z(r) is a known function which vanishes

on [O,R ] and satisfies (34) for some function Q(r). Then, a

sufficient condition for n(r) to vanish is given by Q(r) < R(r),

where R(r) is given by (38). It is desirable to make the differ-

ence R(r) - Q(r) aa small as possible, for doing this reduces

the quantity z(r) - w(r) thus giving better control on the zeros

of n(r). It turned out in practice to be difficult to find

meaningful conditions using this approach.

Another comparison approach utilizes the ratio1

p(r) n(r)/m(r)

which from (1) and (2) satitles the Ri!:cati equation

i:

for cornstant assault speed V.

Note that if a known function h(r) satisfies h(O) 0 ,

h(R ) N/M,

iC .~~~ - -,,

•:'(• ) - :'(t). *. T:•;), t6: o is ý , .

:The re4dpr- is caatiponed that &this r&to is rth riioc" 6r
"that usejt in Chapt* 3.

1I. ....
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then a sufficient condition for n(r) to vanish is 1-hat p(r)

I h(r), 0 < r < R 0 This approach was carried oui ior

h(r) = R0 r1R
0(I and yieldea the following result for linear attrition-rate

i}i I. functions *(r) K K(Ra - r), S(r) K8 (RB - r).

2Theorem 15

Let R R, and let

°'• •rr (R° )
( Ro) > •

00

Then n(r) vanishes.

4.4 Method of Q,,aoi-Lineaiation

A# mentioned above, the function Cr)= n(r)/m(r) satisfies

1 the Riccati equation 39. A solution to (39) is desired

which satisfies the initial conditions OCRo) u WIM. The

1 method of quasi-linearization obtains a closed-form solution

by "linearizing" the P term, 1.66, by replacing 02 with
maxU( - U - where u(r)iC.([O,,Ro ]).
-The followin theorem gives a representation for O(r)

n(r)/u(r) In the a(r) and 1(r) areboth linear.

Lot (r),:11 -r)d la ( -I.K -(R r. Then'

- -- •

I - - ... . ...
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the initial value problem (39) for r < R has the soluticn

Raxp exp 
(2u())d

f~r M u~d f s

r

R
o v 2(s a R-s(

r '_ - s)[ (S) + v 7 (Ra S) R

CoroZlary
A necessary condition for n to vanish on [0,PRo is

K RN

In order to obtain information about p(r) as given by

(40), it is desirable to have a sequence of approximations.

Theorem 1?

Let p(r) be the solution to (39)1 Let

ho(r) (r ' k

'and defineh.n n >1, recursively by .1

, . -I~ n jPr) hn q(r)

. . t4 .n.

}-,• - - .. :, . ,..-' . - . , ' , , "•

iii. •, :" . .... . . .- .i ../ '," ./ . • ". .

• ;•. ' ' :.. :: ,. ,"Q •:\ , ': ''., r;' •. ... , .., , /, ,•a ';• . . _-""' ":" " " " " '" ; ' " " " •'
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q(r) - c(r)O(r)
V

Let

p (r) V h (r)

Then for 0 < r< R
- -0

Pi (r) < p 2 (r)_< ... < p(r)

"and

lim..m pn(r) p(r)

where the convergenpe is uniform.

4.5 Evaluation of the Different Approaohea

In this section the different approaches outlined above are

discussed to indicate their respective advantages and dir-

advantages. By far the most valuable approach to the homccenecu,-

force model utilizes the method of successive approximations.

Except for certain special cases, alr) and 8(r) will be ,u%:h tha-,

a series solution to (1) and (2) is readily obtainable. The

method of successive approximations yields a series which hazi

the advantage that each additional term is easily derived from

the preceding one. The series is such that consecutive term's

"have alternating signs. Further, there is no need to assume

4.
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anything about ct(r) and ý(r) other than continuity. Ti fact,

d:3 Ls seen from examining the technique described in Section

4.1, it is not necessary to assume that v iq a constant, J e.,

it is possible to suppose only that v is a non-negative ccn - '

function.

The approximations to n(r) and m(r) are obtained by

considering the partial sums. These functions are made es-

pecially valuable because of the existence of the error bounds

E;(r). Using the error bounds and the approximations, it is

possible to derive conditions under which, for r[O,R

n(ri) = Xm(r), A > O,-i4th a known, error bound. Also, condi-
tions are available which guarantee--that n(r) vanishes.

These ,•nditions can be made as weak as•desired, i.e., given

any c >: O a condition cain be found ,which guarantees that

n (r) > 0 on [c3,Ro] but n(O) < 0.

Perhaps the most valpable aspect of this-method is that i+

not only treats general a(r) and O(r) but also can be used tc-

"study the" variable-coefficient heterogeneous -force models.

This ,is because-the approach can handle any' equatinri of the

form

... -de :A~r),
dr

'iwhere....

011

-n



and A is e continuous 1, x n matrix. t'n error hound is avaI i

in this case and s sisimilar, in form to that, for th 0 homo':j.;'

case.

Finally, the approximations are such that they can ,e eo-;-

ily programmed. When a(r) and 3(r) are bcth linear, there i-, .!•i

algorithm suitable foi computer use, which can calculate the.
th

nr term in the series fi'om the (n-l) term.

Several charts are given in Appendix C, 4, Z tbKch

idea of the accuracy of the various approximations for differert

values of the parimeters when a(r) = K (R - r) and ý(r)

1KCR8 - r). Using the analog-derived solutions presented

in the next chapter, it is seen that interesxtng 1.ehavicr, ol

the solution (n(r), m(r)) is encountered for those values of

the parameters for which n6 (r), m6 (r)) gives a "good" approxi-

mation to the solution. Thus the analog solutions can be used

to see what values of the parameters are needed to induce

significant changes in the behavior of the solution (n(r). -

Then, using the charts found in Appendix C, 4, 1, it

to firn how many approximations are needed to get an e3rorr'Tun,•

that is sufficiently small.

The most elementary method considered, the power-series

technique of Frobenius., is fine from a theoretical point of view

in that it gives a solution defined for all r. However, A good

error bound for the approximations to, n(r) obtained by consider,-

ing the partial sums is not now available, and any application

using the power-series solution would have to work with !
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paztial sums.. Computer tests for the rapidity of convergence

are of no use, for it is easy to constvuct examples of power

series that seem to converge rapidly fcr the first n torm!u: fnl\'

to diverge eventually. A more serious drawback to this approa•,Ih

lies in the fact that the power series for m(r) is taken al-c-.iu

R While that for n(r) is taken about RL. If R( • KRj, tihen i.

is difficult to comnare n(r) and m(C,) to obtain condci toni un-
der which they are equal- etc. }inally, the solution (25)

cannot~be easily modified to accommodate other than lineir

-(r) and ,(r).

The, comparison techniques developed in Seciion 4.3 have the

"ppotential of being quite useful. Using theorem 14, it is

possible, in theory at least, to find functions ul(r) and . 1 (r)

I... t (r) < n(r) < u (,r)

flA,Itl'ons ur and Z.2(r) such that

2(r) < M(r) < u.-(r)

X .f the quantities ul(r) - l(r) and u 2 (r) - () are "small, "

a very good idea of the behavior of n(r) andrm(r) is avalla.le.

The difficulty, of course, is to determine the functions

"L.- (r)" u v)-, 'Au(r). Finding them is not easv, for a

. elationshi. of t .e m ý <(r, > Q(r) Mf hGcld on [ 0  L

A ink L-:
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T

etc., might not he too difficult. Otherwi.,;e, considJt,,l',l1,

ingenuity is apparently required to find "good" bounds u (r) ,

u 2(r), etc.

It will be recalled that the second comparison technique

described in [4.3] utilized the ratio P(r) = n(r)/m(r). By

wcrking with the "bounding" function

PCR 0
h(r) -( r

a rather strong condition was found which guarantees that n(r)

vanishes (theorem 15). In order to ob ain weaker conditions,

functiojs of the form

N' 1/n
h (r) , O

n

n an integer, were considered, but no results were obtained.

Considering other forms for h(r) also proved to be fruitless.

The method of quasi-linearization, considered the ratio

P(r) = n(r)/m(r). The reason for examining this ratio is that

it provides good information about the relative changes in

n(r) and m(r) as r decreases from R to 0. For example, if

o(r) increases as r decreases from R0 to 0, then Red (n) is

"!defeating" Blue (m). That is, n is decreasing less rapidly

than m. The advantage of the methoO-of quasi-linearization is

that it gives a closedwform.ý solutkon to the Ricc&ti equation

39. The difficulty, of course, is to find a funlitcn u(')

I
4:
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which maximizes (40), or at least find a u(r) which "comes

close" to attaining the maximum. One approach is to find a -

sequence of approximations to the expression given by (40).. J.

Theorem 17 gives such a sequence and one which is monctone

and uniformly convergent. However, the approximations become

rather involved and, hence, are not of't0o muchý use i-n practice.

Another way to find a maximizing u(r) is to use a variational

calculus approach (see •,elfand and Fomin, 1963). However,

this approach was not successful, chiefly because of the "there

exists" nature of the theorems in this approach.

4.6 Re8earch Directions

By far the most promising approach to the homogeneous

Lanchester problem utilizes the method of successive ap-:ox-

imations. Thus, it is natural to expect that further research

would involve this technique. One of the first things to consi-

der is how to improve the error bound E.(r) in the case w7herx c(r)
I

and S(r) are both linear. This error bound is valid for very

general c(r) and 5(r), and its value in the linear -ase i.n nor

way uses the linearlty of the functions a(r) aud B(r). Thv•,

t natural to expect that a better error bound exists.

Not ice L th. e•or les z'ei,.'•,entation," (15) for the o*'lu t J1I01

(n(r), m(L)) are :u" that the oin- of cornsecutive teem", 0-

t.nrrn,.. ! a 'i :i a' be found which guarantees t 1,-t

a: t ,,i •ne ..... . C.W £ries representation, t•., etaail" of

I
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n(r) becomes an ailternating series (i.e., consecutive terms

decrease in magnitude as well as have alternating signs),

then the error in the partial sum nk(r) is no more than the ab-

solute value of the last term (i.e., the (k + 2) term) of n

Probably this is the best error bound that can be hoped for, and

it is definitely worthwhile attempting to find conditions which

force the "tail" tC; Lecome alternating. The difficully is thaz

for certain interesting cases of c(r) and 8(r), the tail may not

become an alternating series. In this case other error ocunds,

such as Ej(r), will have to be used.

Another research direction would be to find a(r) and ý(r)

such that the series solution (15) turned out to be the series

representation of a known function. There is no guarantee that

there are "interesting" c(r) and $(r) for which this is the

case, but for the more realistic a(r) and $(r) this should at

least be considered. This was attempted in the case where a(r)

and 8(r) were both linear using the approximations n1 (r), n,(C-),

... ,n 6 (r) found in Appendix C, 4, 1. The approach was to see

partial sums of known special functions (see Rainvillp, lqfn)

corresponded to the approximaticns ni(r). This initial investiga-

tion was not fruitful, but it probably would be worthwhile to

pursue the approach somewhat further.

Another area of research that should be of great interest

and value would be to study the solutions using the apprcximaticns

((nk(r), mik(r)) in the case v is a positive funCtion on [OR.
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From the form of t-he series solution (.5) together with its j:
derivation it is seen that it is not at a2l necessary fci- v tc

be constant. Once this restriction is removed, it is possible L

to investigate the problem: G.ven a(r) and 8(r), as the combat v
evolves how should v vary so as to maximize the quanti.ty

k (r)- nk(r).

Finallv the metnod of successive approximations can be

used to study the heterogeneous-force case with variable co-

efficients. To see the principle involved, let

0~(r):(*.I
(n (0)-

and let A(r) b, a continuous n x n matrix. Then the system c'

differential equations

d6b

3 A(r) €

can be examined using the method of successive approximat.'cns

just as in the 2 x 2 case. If

K(r) I di(s)lds, 0 < r < R
r L-, j.<n

then the sofution 0 0,r Nnd the app,4o Xnr to ko J .(r) a're relatlt I
by

I

I.
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where

uzE.(r) (Ro exp K (r- - •

Thus, as in the homogeneous case, a method is available to-study

the variable-coefficient, heterogeneous-force case in detail.

I
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Appendix C, 4, 1 1

SUCCESSIVE APPROXIMATIONS FOR LINEAR
ATTRITION-RATE FUNCTIOS

Donald Ballou

The approximations nI(r), n2 (r),...,n 6(r) to the solution

n(r) of theorems 10 and 11 in the text are given below expli-

citly. It can be shown that nk and. k41 ane.t through terms

of order (r - R) Also, nk is a polynomial in (r Ro), with 1.

(r Ro) being the highest order ter•. Recall that Re - r
R - R and R= R c - In the applications we set Ro

R to simplify the results, such as Conditibns A, 9- C. If

further approximations are desired, nT,(r) obthined usiz

equation 10 and the function a 6(r). As um-tioii d in the text,

mk(r) is obtained from nk (r) by repkaci4 M with N, N with M,.

R with Ro, A$8 with I•, Ke with K0, and KC -with X4.

t "

rho approiawtion Kz (r)

K R M

LIM

-: - L.
TA .p •rnato i 5 Lv (r -_o - V -

a . °.. .I...-+-~ )

V L.

S2 • ;•."i+ .1 .-
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Siv0

R 44

The approzimation n (r'):

in3(r) =N + K-Lll-(rv - -i)+" 2 " o (•"R

K2 K RH
Kv1(- R-. M-m (r- Ro2

(r- OLr R0 2v 2 8 v 0

-2 ^" A,•

[i :4L a°" Cr, j<- Ro

+"1 2 ft R

3 0
t 60 3v

- -

K2 2

A 12v J0V 0

x I, 4 x

b ftt

jj~Wt. *+LJJL.L LJRA
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K 24V , , X

+ a - RaR

2 40N 6v• • .

[K~ ~ %.21$ NN2v

S30v

+ iH+ Ir - R0 )5t;L. 4120v 3  30v

31. K 2 Ki2 R R N K 2I I 2 N 2

30'4v 20v

c NR M 1 S.

a 48v' (r R
lT13.22 = 2. 2 2 2"

LJ ,:.. ...Cr

f~~-. K2X R * j;N ý

L 16.

.(r

48v3
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The approximation n (r):

r ' % %

K RM jK KS R RON K
n 5(r) N + a (r - R) + 2a (r R
n5  N2 v'2v2 -]

v J1 80

2 "2 0.K2K2RR N KRRM K K.R M
+ +2B 2

24v "v 12v

& [xx2'K K'R M K KRR N K2K2 RR ~N
+ ii, It

120v 30v 20v

2 2

2", 3' 2 •3, 2 2"_'•
t• 1122 v3v

[- K ;RjN K XR" K3 K K2R R N

6." 120v5 20 b36v

{i Re K'K N K21 I 0R )6

I-I

67,-KK RR XK3K- X K KR M

23Se7v 2 a3 n1 2 .3 v

oontinued
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22 22Sa S .i a s (r _R )7

3.5.7v 2' (',, 507v- o

-2" Kc K R R M 1',0KK R-
+ __a___a __ c1 8 a

3 .5.7v5 2•2 5.7.9v

3 2-u222
K l K 2R M + K2K aN (

5.+ 2 (r -4o)

2 3 5v 2 *3v0

211. Y" IKM 13. K) ,R X+a + a I (r- R )
2 .3 .5.7v5 2 . 3 35. 7v J

- K 3 K 1
+ a rR )1O28. 3 S-vSJ ( 0-Rol

The approximation n6 (r):

K~QMNR~R 0 N KaMi
n(r) -- N + (r- R) +- (r R

v 6v 3v

LI,•-• 3•j( o
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KK N KK'PM m K N+ _ _ _ _ _ _v 3 _" U ,, ( r - K )

+ (r.
L 42v5 1v 20v2

3 n 23"' 2 2 T 7-u
ii K Ka R:R8 M Kc K aR RB aJ KaqK P F "N

S120v ov

2 2
31.KKRM K5 K.' R N 5

2< ?. •. ,7(r' - ,, R)•

+ 1 + - n3
1~2Ov' 9

3 3"'3"-3 
2•"" "-2•K 

3 K n- 3ý 
'

K4. 2. 6 5, 3 5
2 55 2 3 * 5v

31 1K 2 R R N K K 2 N K2 K~ N 1
+ +t aj - + a! -- + a -

2-3K .7v K' R, (. F N
1 3 3 "U3 "2 3 Y 3 2%

11 Ki KR R N K K R R b .. V. ?•'r••. K -.k: • >1:'

Q cl0O + a

S 7' • 3. 5 7.v .•v

II

3 K2 KiR Ll- K' N
.R I- * 5.7v4

+ ' 7%--" 2 - 5j %r -

2 3 3
o i3 , R 2N K K3R"R N 13- 3K FR P, 'N K* h J

2 v 2 '3 *Sv S3Z5 ~ *~
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+ a *5 6 
-T-- 4 s

1 1 Ka M , K 6~ R S N 1 3 K(i. R 0

E+ + 3
3'*5 7v 2 1.3 .7 V 2 .3 5-7vl

9 [ 79' Kc, 1: k N " 4 7K K&K ýN + 1 Ký N, N

26 3 .5-7vbv22 -3' 7

- 3 K~ 120

]_KtKIR(, I3, R R,) •,

a ] (r

[ 21K31, 
332%aK 8R N 211-K K A3R N N

2 -3.5.7-11v 2 3 .5.7llv o

F973 KNK 12N1 F•i2 '33 . ' v "7'

+ (r R0 )12
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Appendix C, 4, 2

ACCURACY OF THE SUCCESSIVE APPROXIMATIONS APPROACH

Donald Ballou

In order to obtain some idea of the accuracy of a given

approximation in the case c(r) = K(Ra - r) and 8(r)

K CR - r), the following sets of charts were developed.

Chart 1 gives the bound on the error in the quantity

SJn(o) - nk(O)I + Im(o) - mk(O)I

provided N + M = 100. That is, the number P.. in the ith row
thn

and jth column of Chart 1 is such that

In(0) - ni(0)1 + !,n(O) - min(0)I < Pij

whenever the parameters are such that

R
M(), [KR + K (2R - R )] < .5 + (j - 1)(.25)

and N + M 100. If N+ M C, then

jn(0) - (O)1 + jm(0) - mi(0)I < C "

Charts 2, 3, and 4 give K(0)-v for different values of the

parameters K, K0, Ra, R Thus, if R z1-200! meters and R
= I0X 106 and KB 3 x 10-

3000 meters, then for Ka 10 x 10 -6

K(0).v , 32, which implies that K(0) < 2 if v > 16 . Hence,

from Chart 1

J1
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in2()- n(O)I + Im2 (0) - m(O)I < 239 ;

Ins(O) - n(O)I ý Ims(O) -m(O)l < 12.2 ;

In 8 (O) - n(O)j + 1m8 (O) -m(o)l < .176

provided v > 16 and the parameters have the values given

them above.
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R
K(o) v -(K [R + K (2R - R6)].2 a a 0

Chart 2: Values of K(O).v if Ra = 2000 mezers, I
R = 3000 meters.

K2 x 10-6 3 x 10-6 4 x 10 x 10- 6

"-6

6 x 10 20 24 28 32
L

-6 4.g

8 x 10 24 28 32 36

10 x 10- 6  28 32- 36 40 i

12 x 10-6 32 36 40 44

Chart 3: Value3 of K(0),v if Ra x 2500:.eto.rs,
R• a 4000 meters.

F0
K:. 2 x 10 3 x 10- 4 x 10 6  5x 10 6

6 0 25 39.38 662 3.13[

8 x 10 -638.75 4S.63 52.50 59,38

10 x 10- 6  45.00 51.88 50.75 85.6$

12 x 10"6 51.25 5e.13 65.00 71.88

1.

t.
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- Chart 4: Values of K(0).v if Rg = 1000 meters.,

77 RB a 1500 meters.

I K0

2 x10 6  3x0 6  4 x 1 5 x 10 6

H -66 6x 10 5 6 7 8

8xl0 6  6 78 9

10 x 10 6  7 8 910

12 i 10- - 8 9 10 11

S. _

| ,

I'1 "

I:
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Chapter 5

VARIABLE ATTRITION RATES, ANALOG COMPUTER RESULTS

Vernon Larrowe and Raymond Crabtree.

The previous chapter indicated the difficulties encountered

in attempting to get closed-form, analytical solutions to the

coupled differential equations -

dn K(R -r)m (1)

dm )"
- -K8 (R - r)n ,(2)

where dr/dt v and

m the number of surviving Blue units,

n : the number of Surviving Red units,

r the distance between the Red and Diue forces,

the elapsed time since the begi W of battle (t ) I

v : the speed (assumed constant) at which the forces
r reduce the distaztce, r, between the,:

J,[ ER8  the range at which the Blue ER0ed] forces' weapons
first achieve a nonzero attrition rate,

,( U J[ ] the tonstant rate of change of the Blue [Red] weapons
attrition rate.

Equations 1 and 2 were programued for solution on an analog

computer to develop some understanding of the important parame-
i. "

ters and the underlying dynamics of this descrtption of a battle.

The results of varying parameters of the model such as L

I, ?

I:
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KO, R , RO, R° (open-fire range) and the initial numbers of

forces, M and N, are presented in this chapter. In all eases,

except where noted or explicitly varied, R is set equal to
0

the larger of R 9 R Since a fairly large number of curves

were obtained, it was useful to arrange them in a logical order

to explore the behavior of the solutions. Accordingly, each

curve is given a four-digit "figure" number, with the dig:'ts

separated by periods. The significance of each of the digits

is described below.

The first digit indicates the basic type of data plotted:

t  Tye of Data

1 Solution of the equations at
r = 0

2 Starting conditions required at r
R for a specified outcome at r .0.

The aeccnd digit of the figure number indicates the ordinate

of the curves:

Secogg DLgit Ordiftte

1 mn or ,N

2 ( J, ,,or (M -N)

3 m/n or M/N•

The third digit of the ifiguw number denotes the abscissa

of the curves.

I1
!

C
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Third Digit Abscissa j
1]. V

2 K 8 -1

3 R

4 not used

K

V

K
6 -

V

7

LV

9 r.

Th. f.Owth digit of tIe liguxse mwber indicates the pa.ra-

me'er Which eohaiges from one curve to the next on the figure:

S>1ooIrt D~i#±t P'eaemter '

v

3 R

4 N

a Lýx'
K

V

7 1



3 2,99

In addition, some figure numbers have a letter as a suffix.

J ] This letter is used to differentiate between figures whose num-

bers would be identical otherwise, but in which some quantity

changes from one figure to the next or the scaling is different.

I Thus, Figures 1.1.1.4A and 1.l.l.4B are families of curves which

differ only in that in the former, the abscissa, v, goes to 80J meters/second, while in the latter, v only goes to 40 meters/

second.

I As an example of the figure number coding, consider Fig-

ure 1.3.2.1. The meanings of the four digits, taken in order,

DAi

"I This is a plot of conditions.

&4 r :

1 3 The ordinate is m(0)/n(0)

2 th abscissa is Ki

EI ach curve in this figure is for
a different value of v.

The figures are contained in Section 5.3. A brief discussion of

i am sos.of the interesting results is given in the following two

I •s sections.

6.1 tax~titonle at Range V.-

Figures 1.1.1.2 to 1.3.2.1 show the solutions of the equations

at r A 0 for various conditions. Figiwes i.I.-.-show m(O) and

n(O), Figures 1.2'*-.-show WaCO) - n(O)] z d and Figures 1.3.-.-

U0
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show m(0)/n(0) = po" Figures having the same r•rdinates wiere

grouped together to facilitate comparison.

Figure 1.1.1.2 shows curves of jurviving forces [m(0) and

n(O)] at r = 0 as a function of closing speed, P. For this

situation, R < R,, but Ka > K so that the lines M(r) and O(r)

cross at some value of r between R and 0. For Figure 1.1.1.2,

both M and N (the initial values of m and n) arc 100. The solid

curves are for m and the dashed curves are for n. Each curve is

labeled according to the value of K8 , which was used in obtaining

that curve. Note that each dashed curve (n) has a minimum

value at some v. This v, of course, represents the closing speed

which gives the fewest surviviors of the Red force. The inter-

section of a dashed line for a given K with the corresponding

solid line occurs at a value of v, which results in a "parity"

condition (i.e., the surviving Blue forces are equal in number

to the surviving Red forces at r : 0). Some of these inter-

section points are encircled on Figure 1.1.1.2.

Figure 1.1.1.3 shows m(0) and n(O) versus v with R as the

parameter which varies from one curve to the next. Ae curvs irk

this figure for R 2000 meters are identinal with those for

K : 5 x 10-6 in Figure 1.1.1.2. Increasing R. increases the Ped

losses and decreases Blue losses. The curves are somewhat sim-

ilar tc those of Figure 1.1.1.2.

Figure 1.1.1.4A is another set of curves of m(O) and n(0)

vers'sus v,, but h.-re, N, the initial value of n, is the parameter

which is varied from one pair of curves to the next. The ar-av ot
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curves is similar in appearance to Figures 1.1.1.2 and I.1.i.3.

Figure 1.1.1.4B is an enlarged version of the left half of

Figure 1.1.1.4A. The closing-speed range is from 0-40 meters/sec-

ond instead of from 0-80 meters/second.

Figure 1.2.1.2 shows the force difference, m - n, ac 1

0 as a function of closing speed. K1 is the parameter which i.1

varied from curve to curve. All conditions are the •nme for this

set of curves as for Figure,1.1.1l.2. The only differences are

the reduction of the range ofv from 80 meters/second to 40 meters/

second, and plotting of d as the ordinate-instead of m(O) and n(O).
0

Several features of Figure 1.2.1.2 are of interest:

The curves for 8 : 2 x 10' and for K 3 x 10" cross the

line for d' = 0.. The value of v at which these crossings

occur represent values at which parity occurs (i.e., m(0)

n(0)). Note that particularly for K8 = 2 x 10"', the slope

of this curve where it "intercepts the v-axis is infinite,

thus indicating that a very sligh-t increase or decrease of v

from 5 meters/second can substantially affect -the outcome of

the engagement. The outcome at v = 5 meters/second for

K 2 x 10- is indqtarminate.
Each of the curves in this figure (1.2.1.2) has a cusp or

discontinuity below the v axis. Reference to Figure 1,1.1.2

shows that these discontinuities occur at-.values of v for which

m(0) : 0. In other words, for values of v up to the cusp in

each curve, m is wiped out completely. For values of v greater
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than that for the cusp, there is some surviving m. The cusp

above the v-axis on the curve for K8  2 x 10-6 occurs where the

Red side, n, is completely eliminated. This curve is very

sensitive to v. For v < 5 meters/second, Blue is eliminated,

and for v = 14 meters/second, Red is eliminated. As v increases.,

each curve approaches m(O) - n(O) = 0. At infinite speed (V

neither side would suffer any losses and the outcome would be

m(O) - n(O) = 0.

Figure 1.2.1.3 is a set of curves for m(0) - n(0) versus v,

with R. as the parameter which varies from curve to curve. Here,

as in the previous figure, the value of v at which each curve

crosses the v-axis represents a paritir condition and again some

of the curves, particularly those for the higher R.'s, show

very high slopes where they cross the v-axis, thus indicating

great sensitivity to v at these points. These curves also

have cusps oi' discontinuities. Cusps below the v-axis indicate

conditions where m(O) = 0, while those above the v-axis occur

for conditions where n(0) = 0.

"Figure 1.2.1.4 is a set of curves with abscissae and or-

dinatps The same as for the two preceding figures, but with N,

. the initial value of n, as the parameter. The v-axis crossings

and cusps for these curves have the same significance as these

features have in Figures.1.2.1.2 and 1.2.1.3. Note that the

'urves appear quite similar to those of T'igure 1.2.1.3. This
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indicates that decreasing N has an effect very similar to that of

increasing R.

Figure 1..2.2.1 is another presentation of the information

shown in Figure 1.2.1.2. The abscissa and parameter have been

interchanged, so that now, v is the parameter and Ka iF the Qh-

scissa. The curves of Figure 2.2.2.1 sh~w an almost line'ar

relationshIp between m(0) - n(0) and K, except for the curve

for v = 1G, which has discontinuities. In Figure 1.2.1.9, 1ho

vertical line for v 1 10 passes through the region of disFc-n-

tinuities for the curves of constant Ka, so it is to be ex-

pected that the transformation of this line to the n(O) - m(O).

K coordinate system of Figure 1.2.2.1 would show discontinuities.

Figures 1.3.1.2, 1.3.1.3 and 1.3.1.4A and B are curves
m (0)

showing the final force ratio, p = - , as a function of v.

The parameter which is varied from curve to curve for Figurlt L..

is KO, that for Fi-ure 1.3.1.3 is R , and that for Figurt'z 2. . I.

and B is N. Figure 1.3.1.4B is similar to Figure 1.3.1.4A

except that the v-axis has been extended to 80 meters/second.

For these figures which show P as the ordinate, the pczn:

where a curve crosses the line Po = 1 represents the paritly

condition. Any point above this line indicates a superior'ity

of forces for the blue side, n, and any point below this line

represents superiority of forces for red. These families of

curves are very similar in appearance, regardless of wheth.7r K6,

R a or N is the parameter.I
I



Figure 1.3.2.1 shows p as a function of K with v as a para-

meter. It is similar to Figure 1.2.2.1, with p as the ordinate

instead of m(O) - n(O). The curve for v = 10, which is discon-

tinuous in Figure 1.2.2.1, is not reproduced in Figure 1.3.2.1;

however, the curve for v z 20 in Figure 1.2.2.1 is almost linear

in this figure, an. shows definite curvature in Figure 1.3.2.1.

o_: Irttial Conditiona to Achieve a Specific Outcome

The 2.-.-.- series of curves show various sets of initial

coneitions and parameters required to give m(0) = n(O) = 10

at r = 0. This is a specific parity condition, where m(0) -

n(O) = 0 and m(0)/rn(0) = 1.

Data for these curves were obtained by setting conditions

on the integrators of the analog computer circuit for the desired

outcome cf the engagement [Pn() = n(0) = 10) and operating

the circuit backwards (in ntegative time) until R 0 3000 meter".

Figure 2.1.1.3 shows the required values of M and N, as

func-rions of v, which ,,,ill lead to an outcome of m(0) = r(Q)

z 10. The parameter, Ra , goes from 2000 to 3000 mete:'s. The

dasIh,o,! ourve lakbeled "2" is N versus v for an R of 2000 meters.

"'rt lar-hed curve labeled "3" in N versus v for an R of 3000LJ

mleer:;. "he Jashed curves between these two are fox, interme-

diate values of R at intervals of 200 meters. The curve for -."'

merpr-i was omitled, ,zince it would have fallen on the M curves.
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The solid curves in this figure are for M versus v and there

is a curve for each R from 2000 meters to 3000 meters at 200-

meter intervals. They occur in the same order' as the NJ curves.

The one giving the lowest M for a particular v is for R a

2000 meters, while the one giving the highest M for this v is

for R 3000 meters. In this figure, it appears that for some

R between 2200 and 2400 meters the N versus v curve couldra
almost coincide with the correspondi.ng M versus v curve. If

this were true the implication would be that for this R , the
Q

values of M and N would always be equal, regardless of v, if the

outcome were to be m(O) = n(O) 1 10.

Figure 2.1.1.5 is a plot of starting condiTions, as a

function of v, to give m(O) = n(O) : 10 at the outcome, with

K and K varied so that K /v and K /v remained constant for the

various values of v. This figure shows that under these condi-

tions, M and N are independent of v,

The validity of this conclusion may be shown analyticalv.

In a straightforward manner (1) and (2) can be transformed t,,

an K
d -- 2(R - r)m

and

dn " (R - r)n . (4)

If v is constant, then K /v and K /v will also be constant.

If v is changed, but K and X are readjusted tc make K aB\
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and K /v remain unchanged, equations 3 and 4 are unchanged. The
B]

outcome for given values of M and N will then be independent

of v, although changing v will change the rate at which the

solution is generated in the analog computer circuit.

Figure 2.1.3.1 shows the same data as that plotted in Fig-

ure 2.1.1.3, but this time R. is the abscissa and v is the par-

ameter. The intersection between each solid line (M) and the

correspondijig dashed line (N) for a given v represents the ini-

tual values and value of R., for equal numbers of m and n at the

beginning of the engagement, as well as equal numbers at the end.

These points do not fall along a line of constant R, as was

implied by Figure 2.1.1.3.

Figures 2.1.5.6A thirough 2.1.5.61, inclusive, are plots

of M and N versus I( lv, with KI /v as the parameter. The initial

conditions defined by the curves will result in an outcome of

m(O) = n(0) = 10. For Figures 2.1.5.6A through 2.1.5.6D, Ra is

at 1500) meters and R is at 3000 meters, but R is varied from
0

rigure to figure. Values of R for thesa four figures are 3O000

meteral:, 2250 meters, 1500 meters, at.d 750 meters, respective-

!v. Although these four figures coiktair conside'able infor'ma-

tion., it i difficult to draw any general conclusions from ex-

.1mini'. th.m'. It ippevz's that, for smaller values of Xo, the

h t•.'r' ' ;,,edei to produce an outcome of m(O) n(O)

, 4~: ":., . r, q wculJ te expec-ted. One way of interpreting

t.h.- data i:. he-e fji figures is to regard each of thea as



a picture of the situation at one of four succes.;;ive val'it-; (l

RO. Thus, Figure 2.1.5.6A gives the values of M and N needed

at R 3000 meters if the outcome at r = 0 is to be m(O)

0

n(0) 10. If K, K and v remain constant, r, the distance

between the forces, becomes smaller at a steady rate. When it

reaches 2250 meters, the values of xi and n at this point may be

found by referring to Figure 2.1.5.6B and reading off the H

and N for the assumed constant valuec of Ka, KV, and v. Figure

I 2.1.5.6C gives the 'picture" whenR has diminished to 1500
01 meters, and Figure 2.1.5.6D gives the information when R0

750 meters. It is apparent that as Ro app-oaches 0, the line,; of

M and N versus K /v will bccome more horizontal and will eventu-

ally coincide with the line, M z N z 10.

For Figures 2.1.5.6E through 2.1.5.61, R is at 300C mete: .

but R has been increased to 3 or 2250 meters. This increase

in range of the Blue forces' weapon would be expected to raise

the initial strength of the Red forces and possibly reduce the

initial strength of the Blue force over those for figures

2.1.5.6A to 2.1.5.6D, where R was only one half of R8 .
a

Comparison of Figures 2.1.5.6A and 2.1.5.6E shows that for
1 3

"any given X /v and K /v, the change of RQ from •R 8s to qR8 does

increase the required N at R 3000 meters, but it also inerea;;-

es the required M. This required increase in M is Vcomewhai

unexpected, and should be investigated further.

S-.

7i
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rFigures 2.1.7.8A, 2.1.7.8B, and 2.1.7.8C are plots of-M and N1

vcz.=~ -•'5, iv w÷h* K /K as the parameter. Again, these values

of M and N are for an outcome of m(0) = n(0) = 10. Specification

of a value of A(T /v and a value for K /KB is equivalent to

specifying K /v and K /v. Thus, if
a!

= x(5.
Vv

and

K
a. y (6)

then

Sa 

2(7)

and (6) and (7) mar- be solved for K /v and K /v to give

K
-a xr xy 0 0 (8)V

and

Sxy 0. (9)Iv€

Since it ias previcusly sl.own that M and N romain constant

when K /v and K /v are conbtant even though v is changed, the

The reader is referred to Section 4.2, where the value of the
dimensionless parameter Rb, which is a function of x, is dis-
cussed.



KU 309

curves of Figures 2.1,7.8A, 2.1.7.8B, and ?.1.7.8C aret? valid Cor

I all v > 0.

An interesting feature of these three figures is the lack

of crossings of the "M" lines with the "N" lines. It appears

that if M > N for any value of v/FWv, this relationship

I holds true for all values of vT-9-/v. This is exDerimental data
t_ 7

only, and the validity should be investigated further, but the

noncrossing condition certainly appears to hold for Figures

2.1.7.8A, 2.1.7.8B, and 2.1.7.8C where R varies fron 3000

to 750 meters.

Figure 2.2.1.3 shows curves of M - N, the difference in

initial forces, as a function of v, which will give an engage-

en•" outcome of m(O) = n(0) -- 10. The parameter is R This

figure was plotted from the same data as that used for Figure

2.1.1.3, the difference being that M - N instead of M and N is

the ordinate This figure shows that there is no value of R

such that M = N for all values of v, although the curve for R

= 2200 meters shows M • N for v > 50 meters/second.

"Figure 2.2.3.1 has the same abscissa and parameter as Figure

1 2.1.3.1, but the ordinate is M - N instead of M and N. The curves

for v z 50 and v 80 are also for M - N; they were plotted in

i dashed form to help identify them on each side of the intersec-

tions with other curves.

Figures 2.2.5.6A through ?.2.5.61 are for the same abscissa,

parameters, and conditions onR R, and R as Figures '.1.5.6A

though 2.1.5.61, respectively, but with ordinates of M - N

I
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instead of M and N. Again, these are plots of initial conditions

which will lead to m(0) = n(0) = 10 at -the end of the engagement.

These curves do not give complete information, as the actual ini-

tial values of m and n must be given, rather than M - N, in

order to guarantee that the outcome will be m(0) n(O) 1 0.

They were plotted to give an indication of how M - N behaves.

Points of interest are (1) the plots are almost straight lines,

and (2) points where M - N curves intersect the line M - N

0 represent conditions where the Blue and Red forces start

with equal numbers and the engagement terminates in a parity

condition. Conditions where the curves go below the (M - N

0)-axis represent conditions where the Red force is larger at the

beginning of the engagement.

Figures 2.2.7.8A through 2.2.7.8C are plots of the initial

force difference, M N versus /VJ-/v with K /K as the par-apr

ameter. These curves are plots (if the differences of the M and

N curves of Figures 2.1.7.8A through 2.1.7.8C, respectively.

They have the same general appearance as the M and 6i .urveE,

themselves.

Figure 2.3.1.3 is a plot of M/N (for an outcome of mi0)

n(0) > 10) versus v, with R as the parat,#'r. The abscissa

and prarameter is the same for this figure as for Figure 2.1.3.1;

onl1y the ordinate has beer. changed from H and N to M/N. The

region below4 MIN 1 represents conditions where the initial

strength of the Blue forces is less than that of the Red, and



thus represents the condition of Blue defeating more of Red than

[ J it loses, since at r = 0 the two forces are equal.

Figure 2.3.3.1 shows the same data as that of Figure

2.3.1.3, but with the abscissa and parameter interchanged.

SThis figure is interesting because ic shows that the relation-

ship between R and M/N for a constant v is almost linear.

- Figures 2.3.5.6A through 2.3.5.61 show M/N versus K /v,

with Ks/v as the parameter. These figurer correspond to Fig-

ures 2.1.5.6A through 2.1.5.I;I, respectively, with M/N as the or-

'dinate instead of M and N.

Figures 2.3.7.8A through 2.3.7.8C correspond to Figures

2.1.7.8A through 2.1.7.8C, with M/N as the ordinate instead of

M and N. They use f Ir.v as the abscissa and K /KI as thei'8

S-- parameter.

5. P Figa.es Showing ResuZts of Parametrio Variatione

i' I
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Chapter 6

DYNAYkCS OF A FIRE-SUPPORT ATTACK DOCTRINE

Seth Bonder and eeorge Cooper

Previous chapters of this part of the report con; ±dered

homogeneous-force battle models in which (a) the ratio of t).i

attrition rate functions equals a constant and (b) the
ratio was not a constant. In the former case closed form solutions

were developed; however, only analytic approximations and aralog

computer results were obtained when the ratio was not constant.

In this chapter we consider the situation in which

ef-r) * coustawt (1I)

and

S• ,,, - w) (2.. -

such that Is not onaftst but nte ,e•ul'taft equations do

yield to an wlmytlo solution. A bthetlcal, rI p*-supVozt

attack doctrine whic&_ pesese tbU pser" is discribed

in- the -folang section.

f.2 ae~etosl Dituattoft

,1. A am• force (n) 606wt a BM posil•tion, -at r 0. :
t.2. A B~lue Zo (al. underm fire'q fra %to Reid force, Mov- :

Ib

I,
I'mmll mmml mmmm m ~ mm~ mm m mmmm l mmmlm
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r = Rs at a constant speed (v) without returning fire

on the Red force.

3. At r = Rs, p percent of the remaining Blue forc, ,M S)

continues to advance at speed v without firing. The

remaining (1 - p)Ms Blue units stop and provide

supporting fire on the Red force.

4. Red fires only on thie moving Blue units.

The attrition-rate functions which result from this situation for

use in the differential model of combat are shcwn in Figure 2.

The Red force attrition rate varies with range since Red units

engage closing Blue units. The Blue attrition rate is a con-

stant, as = K (Ra - Rs ), since the supporting fire Blue units

remain a fixed distance, Rs, from the Red units.

6.2 Solution Prooodurs

Consider first the range interval Rs r < Ro. The Red

forces do not suffer any losses in this region. The Blue loss

rate is

da dM -O(r)N (3)

since

$(r) X K (R - r)

( -rN. (4)
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Letting u R8 - r, du -- d',

dm = BNu du (5)

and
K KNu 2 +C

2v

K N(R r)2
- + C2v

At r Ro, n N and m = M; therefore,

C (RM - (R R 0 )2

and

K N
m M + [(R - r)- (R - R)2] . (6)

At range r Re

M Ms M Cot2v (R• - 2 -(Rs -o2] 7

R S '< R

Consider next the range interval 0 < r < Rs. Let

. pM, x rumber in the Blue moving force

M - p)1s4 number in the Blue fire-support force.

i2
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Then,

dM2

since the fire-support Corce is not fired upon.

The Red force loss rate

dn Vdn M()
f -sM 2, (8)

where

as "Ka (Ra - Rs)

is the Blue force attrition rate at r Rs. From (8)

n--s2 r + C (9)

v

and since n = N at r = Rs

C N+ s 2.
v s

Thus

sM•

n N + - - r) (10)
v S

The moVing Blue force loss rate

dmI dm
1-0 v -- -O(r)n

_ -K (R r)n . (1)
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Substituting (9) into (11),

dM !5Lr 0M 2LN +vas (RS - r)

=-K•N(R• -r)
K[R (R - r) - Rsr + r2], (12)

v s

where, if v is not a function of range (i.e., a constant speed

assault), thi constant

asM-'j<
K = 2

V

Tntegr'ating (12),

Kl N(R -r) 2  r R (R -r) 2  Rr 2  3]
: v +K s ._+ - +C

Employing the initial condition that at r = Rs, m= M PMs,

K N(R -Rs)2 KR (R -R )2 KR T 2 KR 3
6 s 0s sC =M 1  2v - +

and
K N KRs

m M + " [(R 0 "r) 2 - (R 2 + K [(R 8 -r) 2 - (R 8 "R )2)

"2 2r3  2R+ ] (13)

II

Adding and subtracting (R- R and collecting similar terms,

lA
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rr

- M+ [(R r)3 - (R - R -)3]

+ KON (RB r) 2 - (R0  R R 2J (14)

MR . - R ) 1 ( 
21

0< r< R
where it is remembered that -

SMK K (R - Rs)M2 K
K : 2 :2"

v v

6.3 Conditions on m and n Approaching Zer.o

We consider next the conditions such that m and n approach

zero simultaneously. Let the range at which this occurs be

0denoted by R°. Then, one has from (14)

mfl1 :Ml + RB-R°)3 "(RB- Rs)3] + N- K(R Rs)

m- R0 )' - (Re -

: o (16)

and

n N + s 2 - RO) a 0 . (17)v
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n Nv 0Letting the range R can be found from (17) to be
S

"• 0 Nv
- N + R e + R(1)

s 2

Letting Al R - Rs, and substituting (18) into (16), one has

M+ {R 0 -( + K ) 3  3 K~ + N

{JR - (6 + R )]2- +2) 08 Sl

M + 'Y [31126e + 3112 e ] 4[7 r 2]Ie2u + e 2] 0

Since K = SM4Ka

v23

_ 2 S( Nv , M2KI \v
3v~~r s+)(92

v 0

Fi~a11y,

KlN2  K Nwv
N1 - + :0 (19)

Remembering that

M1 =pM5

I
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M2 =qMs where q 1 - p

Ms =M + [(R - R - (0 - Ro)21

and letting 2

y : (RB- Rs) - (R -R

(19) becomes

2 M K Hq M s K v

pq - " + (20)
N 6

or

z K6flz K v
w r- e0: + three r 0 n b (21)n-

whe IT . To find the desired conditiuns, it is

necessary to solve for the three roots of (21) denotee by rl,

r and r 3 . This is accomplished by applying Corian's formulas.

Equation 21 is in the general form x + b- cx + d = 0,
K•I Kyv

where b x 0, c and d : - , Intermediate quan-

tities needed are s, t, and L. where:

s- b (22)

r
d 1b 2~ 23jC + (23)

GpN
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K 3! 3  K 2 v2
S: 3 1 2 + - (24)

216p q 1s44p q •

It can be shown that equation 21 has three distinct real roots, a

single real root, or at least two equal real roots according to

whether L is negative, positive, or zero, respectively. The latter

"condition will be neglected for the moment. The condition that

L be positive implies that

3 2

a <. (25)

"S"S (R- R5) (1 - p)
s

ThA single real root is given by

r +

where

A +

53 . ./ "I 6q 2pq a V ,5 K

4/3

3t _______

b

_______________+



and

I When L < 0,j three real roots exist. These are found by a
Sdifferent procedure, which iemploye the following quantities:

f -0 V 3

COB8 e r IV (~la 27)

2 W3 al q + ,=P (26)

r

1/2

Using (27) and (28) in the following. expressions:

S vr COW5~ IT

r 2 ao ( 60

u 2,i'F7200I{;
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the thr.e roots are

4"!" I cos cos ( (29)

r _ C co, l(-vs I 3600)1 (30)

4Cos cos ( 4+ 720 (31)

Using (26), (29), (30), or (31) as appropriate, the con-

ditions which cause mI and n to approach zero simultaneously are

easily found.

8.E Condition for (m. - n) > 0 at the Defended Position

The value of the quantity d 0  (Mi1 - n) at zero range is

a measure of future success in taking the defended position.

Consider the conditions under whlv c do> 0 at range zero. Using

previous notation,

a.,) 2n M1 4 - ) . - -IXR - ) (32)

S%14 2R6
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d0 > 0 implies that

)[qK (I qq
+ - (R 3 1R3) -3v 22v 2 --

+ L 2 ] - > 0 (33)

or that the initial force ratio must be

K (R 2  2)

M 7-vK
a a qK 3 3 ,,qK a " 2 2... . s - (34),:+ ....-.•,(,R - I ) - ,, ,,,-U,) - ",,"

6.5 Effeot of A4eaaI t Speed and Pe.oentage Pooe SpZit

After considerable rearrangement of (33),

TI T. T 3
do :pM- N + + -+ - (35)

0 V

where

FpK Ny (R' 92 ')K NT1 = uqR ,M +. A,: +
2

Q qK (R 3 - a 3 )m )M oK ,IM(Rt2 . U 2) QsqR KXNY
T2 - - 2

'Some recent result& indicate tkAt "bang-barqg controls should
be applied to v aM• p So as to aaxzt*mse 4o' The'* roeiults
will be described in a later report.
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SI
-! sK ( 1Q .] 3 )M H KU TO 2

-12)

3 3 4

201SqK2Ny0

where

=12 R R

Taking the partial with respect to the assault speed

Ldo T'1 2T 2 3T 3
-- - - -2 T (36)

v V

To evaluate the behavior of (36), one needs to know the alge-

braic signs of TI, T2 , and T3 . It is easily shown that T3 is
3T3

always negative. Hence, - - is always positive, since
v

by the coordinate system assumes that v will be a negative quantity.

It is beneficial to know 4he conditions under which d. can

be increased with increased velocity. By inspection, if T 2 > 0
adQ

and T, < 0, r- will be positive. T 2 > 0 implies that

SRsKWN~fq
qKH* > " 2 or, after some rearrangement, that

S> "Y (3,)
Rs(Rfe

KN
T < 0 2i)., that JLP•. (R2 04)] < 3qRM, or, after

some rearrangument, that

i!
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< ... . (38 )

ado
hence, when (37) and (3q) are satisfied, 3 is positive ard

d can be increased by increasing the velocity of the attack.

The conditions under which the reverse is true are more difficult

to specify.

The conditions under which an assault speed exists, wnich

minimizes or maximizes do, are given by1

a 2dO 0 6T 2  12T 3

12T3
-= 3 +-7i- +r

T< 0 1 3• > 0 (40)
3 <2 0

V

ST 2

2T
1

(

v

TVe conditions (40), (41), and (42) 8ugest that thv second

de.rivative is positive if (37) ar4d (38) hold. Hence, the speed

found by setting (31) equal to %v-ro and solving would Oe the one

which minimizes d for N in the specified interval.

'See footnote page 380.

I
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(I

Consider next the influence of the force split p. After

some manipulation, (33) may be put into the form

do = Ap + AB(U - p) + C,

j where

A= + =IT"

B sK (R3 3 •sK 6 1 2 2) sRs
B = -- , ) v-S (RB - v

3v 2v- •

K R2  _ 112

Hence, A - AB constant. To check the extreme conditions,

ý)ne see that d0 is at a maximu~m when p 1 if

C + A A b i C or B < 1 . (43)

For the rever.se of (43)-, d will bc at a maximum w-hen p =.
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PART D

Hi rEROGENEOUS-FORCE DIFFERENTIAL MODELS



I
I
I

The preceding parts of the report described efforts to

1 obtain solutions for the differential equation description

"of homogeneous-force battles. These descriptions were sim-

plifications of the general variable coefficient differential

equation model of heterogeneous-force battles. In this part

of the report we present solutions and solution procedures for

simplified forms of the differential equation description of

heterogeneous-force battles. Chapter 1 contains the development

of solutions for the heterogeneous -force battle model. when the

attrition rates are cor.stant and a "zero-one" allocation policy

is employed. Chapter 2 contains a description of our efforts

to develop optimal allocation strategies in context of the

heterogeneous-force model. Chapter 3 describes a simplified

numerical solution procedure for the general heterogeneous-

j force model and a computer program for performing the compu-

tations.I
I

See equations 1 and 2 in Chapter 2, Part A.

I oewdinlg page lnRk

I
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Chapter 1I
CONSTANT ATTRITION-COEFFICIENT MODELI

Stanley SternbergI
1 1.1 Introduction and Notation

In this chapter we shall discuss the solution of the

following differential equations representing a heterogeneous-

force battle:

d7i a j.hjinj Il

j :)

m (t=O)

d-1

n n.(t=O) N i

P ' M"

.1
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where

a.. = the attrition rate--the rate at which an

individual system in the ith Blue group
attrits live jth group Red targets when it

is firing at them.

ei. = the allocation faotor--the proportion of ith

Blue group systems assigned to fire on ]th Red
group targets. These are assumed to be either

1
zero or one for any i,j pair.

Similar definitions apply to ji and hji. Equations 1 and 2

are similar to those presented in Part A of the report except

(a) perfect intelligence is assumed for both sides and (b) the

attrition rates and allocation factors are not range dependent

and are treated as constant.

To facilitate the study of [i] and [2] we introduce the

row vectors il, n, A, and R, whose elements are the mi, n., M.,

and N., respectively. The derivatives of Fm and A are appropri-

ately defined as the row vectors

and

dn (dn1  dnj

- r- ... , .F

1 The value of this zero-one allocation policy is discussed
in Chapter 2 of this part.



The matrices A and B are defined as

A = (aij) (e ijij)

B = (b ji - (h ji.ji.

It follows that equations 1 and 2 can be rewritten

dm -nB, FR(t=O) =M (3)

dn= -...A, ff11(t=O) N R (4)

An alternate form to (3) and (4) that will be very useful

is defined in terms of the row vectors

di -(dii d

and the matrix

( )
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The constant-coefficient, heterogeneous-force model of the

combat process may then be represented by the single matrix

equation

d•UTd = -c 1(o) . (5)

The sclution of equation 5 is a vector whose elements are

functions of t. It will be called continuous if its elements

are continous functions of t in the interval of interest.

Similar definitions apply to matrix functions.

1.2 Existenoe and Uniqueness of Solutions of Linear Systems

A unique solution exists to equation 5, as demonstrated by

the following basic theorem:

Theorem I

If A(t) is continuous for t > 0, there is a unique

solution to the vecto, differential equation

d WO, e0) q(6)

This solution exists for t > 0, and may be written in

the form

x =•X(t) , (7)



where X(t) is the unique matrix satisfying the matrix

differential equation

dXX0 I
- XA(t), X(O) I(8)

where I is the identity matrix.

The proof of theorem 1, as presented by Bellman, is given in

Appendix D,,li. C-r particular problem is concerned with the

case in which A(t) is a constant matrix.

1.3 The Matrix Exponential

In the scalar case, the equation

dxdx ax, x(G) q (9)

has a soluxion

at (0x qe (10)

The analogous solution of the matrix equation

dI= iA, (o) =(1)

has the form

e -eAt (12)x:R

I{

I
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By analogy with the scalar case, we define the matrix expo-

nential by the infinite series

At Antn
e = I + At + ... + A .... (13)

This matrix series exists for all A for any fixed value of t,

and for all t for any fixed A. It converges uniformly for

finite t. A proof of convergence is given in Appendix D, 1, 2.

To show that equation 12 is the unique solution to matrix

differential equation 11 requires that eAt, as defined by (13),

satisfies

de At At
tAi A) (14)

eAt : I for t = 0,

as required by theorem I. The validity of equation 14 is

obvious.

1.4 Simlarity, DiagonaliaabilitM4 and Jordan Noimal Form

Since the solution of the differential equation 5 can be

written immediately ab

4 : e t C ,( 
5
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our pioblem reduces to evaluating the matrix exponential e - .

The infinite series given by (13), of course, is always avail-

able, but not very attractive. Our object is to write equation 15

in a closed form which will lend itself to rapid computation.

The solution is facilitated by the fact that the attrition

matrix C has a very special form. Recall that

and that

(aij) .(eiaij) (17)

(b~i)d (h 5iBji) . (18)

When the fraction of type-i components assigned to opposing

type-j components is either 0 or 1, or vice versa, the matrix C

is said to be "row elemental."

[9

Definition I

A real matrix A is "row elemental" it each of its

rows contains exactly one nonzero element. Similarly, A

is "column elemental" if each of its columns contains
exactly One nonzero element.
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"The cincept ctf tie similarity oi matrices is used in

the aevelopment ui our solution procedure. A square matrix A

is said :o be zimil1-' to a square matrix B if there exists

.A nonsingitlar matrix R such that

A R-BR . (19)

if particuiar concern is the situation where A is similar to

a diagonal matrix v, i.e.,

A R- DR , (20)

and we say that the matrix A is diagonalizable.

The reason for this particular interest becomes apparent

when we note that

A n . (R-IDP)(R- 1 DR) ... (R- ILR) (21)

A" K-1 DnR k22)

S'*uw the matrix exponential e- tA can be written in terms of

thu' ol 1)t O as
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e-tA =I -tR-IDR + t2R- 1 D2 R t3R-1 D 3Ri ~ ~2! 3! + 0. (3)-....

or

e-tA = R-I - tD + t2D2  3  +.. R (2D)

But the diagonal matrix D raised to the n th power is simply

dn0

dn
22

n (25)

0 dn./
nn

Thus, the bracketed expression of equation 24 is in actuality

of the form -tdl
e 110

td22

t %2 D2 t 3D 3
I -tD+ + - t + .•

3!td

0 e n.

(26)

Therefore, assuming that A is similar to a diagonal matrix D,

the matrix exponential may be evaluated from the expression



-4-td

/e tdl0tA 1• e-t22

e : R- I R . (27)

--t
0e

In the case where the attrition matrix is similar to a

diagonal watrix, the analysis is now quite clear even though

the actual determination of R and D hMs not as yet been discussed.

Unfortunately, however, the attrition matrix C is not generally

diagonalizable.

The situation is remedied somewhat if we relax our assump-

tion that C is similar to a diagonal matrix to the corditicn

that C be similar to a matrix in Jordan normal form.

A matrix J is said to he in Jordan normal form if it ib

zero everywhere except for submat-ices along its diagonal, all

of which are Jordan blocks. If M , , ."., are Jordan

blocks, then the matrix

S o . . .

.00 (28)
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is in Jordan normal form. A Jordan block is a square matrix

of the form

X 0.. 0 0

0 k 1... 0 0

.. (29)

0 00 0 . . Xk 1

0 0 0 . . . 0 Xk

That is, it contains a sequence of l's along its "superdiagonal,"

while everywhere else it is zero, except possibly along its

diagonal, which contains a sequence of identical, not necessarily

Teal, numbers, Xk" Thus, the matrix

is a Jordan block, so is the matrix 0 , and the matrix of

a single element is also a Jordan block.

Our interest in -Jordan normal matrices will be restricted

to those having Jordan blocks with zero elements along the

diagonal.



Defi n, io,

"A "zer Jordu block," denctec j` 4 is • T'

block with Xk equal *to zero.

A Jordan normal matrix whose diagonal consists entirely of

zero Jordan blocks and/or diagonal matrices will receive parti-

cular attention.

Definition 3

A "zero Jordan normal matrix," denoted J , is a matrix
of the form

D1 0

DL

o .

where the Dk are diagonal matrices and the are zero

Jordan blocks.

We now state our main result in the form of a theorem and

demonstrate its application to the solution of the heterogeneous-

force equations in the next section.
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Theorem 2

If A is a square, row-elemental matrix, then A is
similar to a zero Jordan normal matrix.

The proof of theorem 2 is given in Sections 6 through 10.

12. 6 Solution of th, Heterogeneouesoroe DifferentiaZ Equations

In this c!etion we assume that *cheorem 2 is true and

demonstrate its consequences. We have given that

C = R-'j 0 R , (30)

where C is a row-elemental attrition matrix. Then$

e-tC R-I _ tj0 4, 2R . (31)

The powers of J are

D n CD1

j ",n (32)

where the D are
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D . (33)

0 d M Mnr -

The powers of a zero Jozdan block are quite easy to compute as

illustrated in the following example:

f/ 1 0 0 0 0 1 0 C 0 0 A\

(00 . 0 1 3 0 0 00)0 0 0 1 0 0 0 0 0 0 00
\oooo 0/o\oooo o/

and n is the zero matrix for n > 3. In other words, if

is a zero Jordan block of order N, then is nonzerc

only for n < N, and the nth power of is zero everywhere

except for a superdiagonal of l's displaced n times from the

main diagonal.

The bracketed term of equation 31 is therefore the me trix

function

E1(-t) 0

F(-t) L (34)
Tl(-t)

0 TM(-t)



6/3

/ "

f3b)

II
0e /

and

1/ -t t 2/21 -t 3 /3! " " (-l)t+ltm/m,

S0 1 -t t 2/2! (l1)mtM-I/(m-1;!

Tk(-t)= 0 0 1 -t

0 U 0 1

(36)

The solution of the heterogeneous-force differential equa-

tions is therefore

(i r) =(IR N)R- 1F(-tIR .(37)

i.e As.4gnxent Chains and Cyolee

When we examine the actual assignments which could crise

during a hecerogeneous -force battle process, we recognize two

distinctly different situations which lead to two different

kinds of time solutions to the model differential equations.

In the first situation we have "cyclic assignments." For

example, mI is assigned to n3. who 4s assigned to m., who is

I
I
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assigned t6 n,, who completes the cycle by being as-

signed to m Of course, here we are speaking about 0,1

assignments where each component group is assigned to only

a single opposing component group* In the second situation

m 3 might be assigned to ni, who is assigned to m 2, who in turn is

assigned to one of the components in the preceding cycle.

Thus m is an unassigned componer r t and suffers no attrition,3

while n 1. and m2 form part of tho "chain" headed by m3-

It should come as no surprise that the cyclic assignments

are directly related to the exponential terms of the time so-

lution shown in equation 372 while each assignment chain gives

rise to a submatrix T k* The complicated interrelations be-

tween the many possible assignifient cycles and assignment�

chains are manifested within the similarity transform ma-

trix, R .

We now define the above concepts in a more formal manner

with respect to the attrition matrix, C. Let C be a row

elemental matrix of order N and let W be the set of N subscript

pairs of the nonzero elements of C,

W {(3-2t 1 )J, (2ýt 2 )2 (Njt N)) (38

-th
where the nonzero element on the i row of C occurs on the ti Ith

column of C. Suppose that n-ordered sequence S m of length

m can be formed from a subset of W

S m t il U 2 5t i m 9, t i (39)



4rfor k . ... ,r-i Such a sequence is said to form a "sub-

9 script chain." For example,

S4  (4,3) (3,2), (2,5) (5,1)

is a subscript chain of length 4. The elements of C whose

subscripts form the subscript chain are said to form an "l-

ement chain," or simply a "chain" of length m.

If Sm is a subscript chain and if

tim i 1 (41)

then the subscript chain is said to form a "subscript cycle."

The elements of C whose subscripts form the subscript cycle

are said to form an "element cycle," or simply a "cycle" of

length n, denoted C . An example of a cycle of length three isIn
SC3 Z (c2,5), (C6,3) (c3,2)

A nonzero diagonal element of C forms a cycle of length one.

The following properties concerning the row-elemental

matrix C are sufficiently obvious as to be stated largely

without proof:

Property I All nonzero elements of C belong to either
cycles or chains, or both. To avoid the ambiguity

of the latter case, we will say that an element

].
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belongs to a chain if and only if it does nP.t belong
to a cycle.

Property 2 An element can belong to at tiost one

cycle. For if two different cycles ahare common

elements, then there is one common elements say

C jk which is followed by nonzero elements Ck tk

and c kt,,k 0 k,' of different cycles. But this

contradi ts our premise that C is row elemental.

Property 3 There are no cycles of length one in C.

Similarly, there are no chains of length one. (C

has a zero diagonal.)

Property 4 All cycles of C are of even length.

Property ,5 Let A be a row-elemental matrix, all of whose

nonzero elements form a single cycle. Then - is..

also column elemental.

Definition 4

A "cyclic matrix" is a row-elemental matrix whose

nonzero elements form a single cycle.

In proving th&t a row-elemental attrition matrix C is

similar to a zero Jordan normal matrix (theorem 2), we will

first show that C is similar to a "cyclic normal matrix."

Definition s A .ow-elerental matrix of "the form

c 0... 0

20 .. 0 t rows

Q (42.) :
\D, D2... D m G. ,n-t rows



is said to be "-ylic norma)." if C-,C2N.. hC are cyclic
submatrices and the nonzero elements of submatrix G .1o

not form any cycles.

Theorem .3

Let A be a square, row-elemental matrix.. Thien A

is similar to a cyclic normal matrix Q, i.e.,

A P -Qp, (43)

I where the similarity transform P is a permutation matrix.

"Before proceeding with the proof of theorem 3, we introduce

a ftw definitions concerning permrntations.

Definition 6

A "permutation of degree n": is the operation-of.

changing the order of n given distinct objects. If the

n distinct objects are the numbers i,...,n, a permutatin-'
- is the replacement of one arrangement (AI .... X n)- of

(l,...,n) by a second arrangentent (pl,...,nI ). ýWe
represent this permutation by._

7r
Xt

We frequently say that the permutation w transfoams .

into Pi or that P, is the image of A, under ir, %,*

7T(A)~ 2. 2
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The "product" onr of two permutations It and 0 is the

permutation resulting from first carrying out 'T and then

. Th us it

then

It follows that the inverse of

1 .i'" '1n)

is the permutation

I

Pefinition 8

With each permutation v of degree n is associated the

n-by-n matrix P defined by the equation

(p ij) 1i whenever ij

10 otherwise

for i,! = l,...,n. Thus, if IT is the permutation



409

I
7r

the first column of P contains a 1 in the A row, the

second column of P contains a I in the , 2th rrow, and so

forth, while all the remaining elements are equal to

zero. A matrix of this type is called a "permutation

matrix."

It follows from definitions 7 and 8 that, if P is a

permutation matrix associated with the permutation r., then

P-i is the permutation matrix associated with i .

A permutation rt may be performed on the rows of a square

matrix A by premuztipyilr A by the pearutationmatriy P asso-

ciated with 1'1. Le' •a,, denrte the elements of the matrix

product PA, the:"

pa.i p ak (44)
4J 

.i k

There iF only on, nonzero element, Pik*' in the i row of

I P. in particulýir, Pika = 1 where k* =-- 1 (i). Hence , the non-

zero product in the summation over k is pa if and only if
*1)

i W ,(k).

A permutation w may be performed on the colu•ns of a

square matrix A by postmu..tipZying A by the inverse of the

permutation matrix P associated -with v. Transposing A replac-

es the rows of A by the columns of A. Premultiplying AT

by P permutes the rows of AT. Transposing the matrix produ,-t

I
!



PAT yields APT, which replaces the columns of AT by the

permuted rows of AT; hence, A has been permuted columnwise

according to Tr. Since the columns of P are mutually orthogonal,

normal vectors, PT p-l The oparaxion of simultaneously in-

terchanging (permuting) 'the rows and columns of a square matrix

A according to a permutation n is therefore accomplished by the

matrix operation PAP- ".

Simultaneous row and column intercha-ges are all that are

required to put a square, row-elemental matrix into cyclic

normal form. Let A be square and row-elemental and let W

be the set )f subscript pairs of the nonzero elements of A

""W (I't i ),(?ith 4e n,t nl

Let CI,...,Cm be subsets of W of subscript pairs forming cycles

in A. In particular, cycle k consicts of tCe t subscript

pairs

Ck {kl'tk ),.'',(ktt k'

Let w k be the permutation

kI k2 k[
1k 2

~r r+1. *

and Pk its associated permutation matrix. Then the operation

PkA interchanges the rows k 1 ,..,,kD of A with rows r,...,sr+

of A. The operation ADkI interchanges columns k,..,k

with columns rg*_,r+t cf A. But columns kl,... ,kt precisely
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contain the elements of cycle Ck becaise ftk ).9..tk is

identical tc {kl, . Therefore, PkAPkI moves the elements

of cycle Ck into the square submatrix C k on the diagonal of

Q. The fact that A is row elemental insures that Ck will cont•ihi

only the nonzero elements of cycle Ck.

Simultaneous row and column interchanges of the type

just described on all cycles of A are accomplished by the

transformation

PmP PIA P1 I...P 1 P(4)

m m-1'` 1 1 1- m (4v

or sinply

PAP" , (46)

where P = Pm.P M100P0 . If J* is the column subscript of a

nonzero element a* of A not belonging to a cycle of A, but with

j* contained in the set of column indices of cycles of A, then

i*, the row subscript of a*, cannot belong to any set of row

indices of cycles, or a* would itself belong to a cycle.

The similarity transformation PAP" 1 therefore carries column

J* into the first t columns of Q, but carries row i* into the

last n-t rows of Q. The submatrices Dk, therefore, are made

up of nonzero elements sharing rows with the elements of Ck'

All submatrices to the left and right cf Ck must be zero.

Finally, the matrix G is composed of interchanged honzero

elements of A not previously sharing columns with elements

belonging to cycles.



K
jilt•, 1 4• miI4 imtvx 1) is therefore obtained from

! L PAP" 1  (47)

A , |,-QP , (48)

rh Af! 'l• I Ipi,0i 00I (

111 I•h..ti4li fltht'WllDI m4lrti Was prevL•vuly discuss;d in

",i IlI 1,4l Th$aoe'io I $toted without proof that, if A is

~itCWfi*ttslmat-rist -then A is sixiiar wv a par-

~floilst .InP14j notwmal forml called a zero Jordan normal ma-

I•rtn The oern Jord4ri normal form was defined in terms of

submatrices along its diagonal, which were stated to be

either diagonal submatrices or zero Jordan blocks.

In theorem 3 it was shown that a square, row-elemental

matrix A is similar to a cyclic normal matrix Q. We begin at

this point to demonstrate that Q is similar to a zero Jordan

normal matrix Jo. Since

A z p-QP (49)

by theorem 3, and as we will demonstrate,

Q : SJos , (50)

the proof of theorem 2 immediately follows as

A P_ 1SJsP S51)
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or

I0
A IRlJ R ,(52)

where R SP

Our particular result follows as a consequence of the fol-

lowing well-known theorem uf linear algebra:

Theorem 4

Let A be an arbitrary square matrix. Then there existsIi a swasingular matrix T such that

A = T JT ,(53)

where J is a Jordan normal matrix.

Since the proof of this theorem is quite detailed and is

given by Franklin (1968), we shall avoid the proof but we

will discuss its c-ýnsequences.

We write the NxrN Jordan normal matrix J as

0

J

where the kt Jo~a block

Ak ~ 0 0

A 1 k' 0  0

0 0 A 1

0 0 *.0 Ak
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is of order nk; hence, nI + + nM w N. Let the rows of T

be denoted by the row vectors Tl ,... and let the submatrixSN

Tk of T consist of the Mk rows k +1 40,... kt kwhere sk-

n + +nk_ Premultiplying both sides of equation 53

by T yields

TA = JT, (54)

which is equivalent to the system

TkA = 1Tk ; k = l,...,M. (55)

Expanding (55) shows that

A 1 0 0

+1 0 A 0 0 +

A=) .(56)Sk 0 *o Ak 1 Snk.

0O 0 ... 0 Xk

or

k+1 A Ak *1+1 + Ifk+2
k k~ k

T A X k T kn T

ksk+nk ck ya k+%

which, on collecting common teUms, is

!I

1:
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I
T k TskI(A A AkI) T sk +2

S(Aknk (A8)

Ts8k +n k(A X Ak1) =0

Now, substituting the last equation into the next to last

and so forth yields

Tsk +l(A X k = a

Ts k+nk l (A -kI)2 = 0 (59)

sk +nk(A - )kI) 0

The vector T sknk is by definition an e.igenvector of A corres-

ponding to the eigenvalue AX. The eigenvalue Xk has multi-

plicity nk in A and the remaining nk-l vectors T.k+1S...,

Ifsk+n k are called "latent eigenvectors" of A corresponding

to eigenvalue Xk. The T. are necessarily linearly independent

as The matrix T is nonsingular.

Both eigenvectors and 1atent eigenvectors are examples

of what Franklin calls "principal vectors." He states that

Sa s� or nonawro vector • is a principal vector of grade

. _ 0 b•loagiM to the eigenvalue A, if

(X I a)- " 0

i p and if there is no sauller non-negative integer y < g fox, which

OXl - A)1 '0.

"[db
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The vector p 0 is the principal vector of grade 0.

The eigenvectors are the principal vectors of grade 1.

Herein we shall speak in terms of principal vectors of grade

g rather than this ambiguous latent eigenvectors and restrict

the term eigenvector for a principal vector of grade 1.

In the next section we discuss the eigenvalues and ei-

genvectors of the cyclic submatrices on the diagonal of the

cyclic normal matrix Q.

1.8 Eigenvalues of CycZic Matrices

We begin by stating our main result.

Theorem

Let C be an N-by-N cyclic matrix: (i) Then C is
similar to a diagonal matrix; (ii) Let p be the product
of the N nonzero elements of C, then C has N distinct

Nth Neigenvalues equal to the N roots of (-l) p.

We need only prove part (ii), for part (i) follows immediately

from the following theorem.

Theorem 0
[Mirsky, (1961), p. 296] If the N eipenvalues of

the X-by-N matrix A are distinct, then A is similar to

a diagonal matrix.

We wil] need the following definitions in proving part (ii)

of theorem S.

Defitnittion, 9

(i) Let A be an N-by-oN matrix. If K < M and L < N,
then any K rows and L columns of A determine a i-by-L "sub-
matrix" of A. (ii) The determinant of a K-by-K submatrix

of A is called a -"I-roved minor" of A.



£417

When A is square, the following definition is relevant:

Definition 10

A "principal submatrix" of A is a submatrix whoe

diagonal is part of the diagonal of A. The determinant

of K-by-K principal submatrix of A is called a "K-rowed

principal minor" of A.

A K-by-K principal submatrix is obtained from the N-by-N matrix

A by deleting N-K rows of A and the corresponding columns,

i.e., rows and columns having like indices.
I

Finally, so there is no misunderstanding:

Definition 11

Let A = (a.i) be an N-by-N matrix and A a scalar
I

variable. The "characteristic polynomial" of A is che

polynomial g() given by

a - aa1 -1a 2 ... - alN

g(A) 11i - Al : - a 2 1  A -a 2 2 . - a 2 N

a NI aN 2 ... A - aNN

(60)

The characteristic equation of A is the equetion g(W)
0. Its roots are the eigmnvalues (or characteristic

roots) of A.

The polyno[aI g() is of degree N. !Zts leading term is AN.

The remaiming coefficients can be determined bV the following

theorem:

1:
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Theorem 7

[Mirsky, p. 197] For 0 < r < N, the coefficients
r.of X in the characteristic polnomial g(X) of A is

equal to (-1)N-r times the sun, of all (N.-r)-rowed principal

minors of A.

The principal minors of a cyclic matrix may be evaluatea

by the following theorem:

Theo: em 3

Let C be an N-by-N cyclic matrix. Then for 0 < r < N,
all (N-r)-rowel principal minors of C are 3ero.

The proof of theorem 8 follows. Let C' denote an (N-r)-

rowed principal submatrix of C where 0 < r < N. S~ine C is

both row- and column-elemental, its principal submat7ices, formed

by deleting corresponding rows and columns of C, must neces-

i8arily contain fewer ronzero elements than C. As the nonzero

elements of C form a single cyrcle, the nonzero elements of C'

cannot therefore form any cycles.

If we denote the nth power of C' as Cn (csn), then

we can write

N-r N-r 12

SkI kl(kl1 a k 2 a kn-221 kn lk- 1L

""k C kn-2 k n- k n.1jj(6
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Note that th- el:ments in the sumniand abovn form an no•-eicnct

chain. Now suppose n : N. The elerents in the s,.irmanr' Ji,iin

cannot all be nonzero, for-' if they were, tney wculd nctrs•ar'i ly

have to ba distinct; otherwise, the N-eleme:.t chain would

contain a cycle. But C' cannot contain N distijct ronzero

ele.ents simply because it has fewer than N n,nzero elements

Therefore, c k is zero and C'N is the zer-o matrix. Th, prool

of the theorem follows from the fact that

Ic'l = IC'nl

Fr r=0, the single (N-r)-rowed prineipal minor of C

is simply the determinant of C, which iz giver, by*(-l)N+1

times the product of the nonze.-o elements of C. Lptting p

denote this product, the characteristic equdtion of C is then,

by theorems 7 and 8,

AN + (-i)N+1. :0 (62)

This result proves part (ii) of theorem S.

1.9 Vig6nvectore of Cyclio Matriý;Ce

Before we can transform a cycli. matrix to its diagc'nal

r form, we must mcoupute the necessary transfoimation .. iaLrix.

This is accomplished by computing its eigenvectors.

Theoren 9

i (.Irskjk, 1961, p. 293). If X,,...,Xn ar- linearlv
independent eigenvectors of an n-vy-n matri- A, ano S

I
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is the (nonsingular) matrix having X ,...,Xn as its columns,

then S AS is a diagonal matrix.

Eigenvectors corresponding to distinct eigenvalues of A are

linearly independent (Perlis, 1952, p.1 7 2 ), and thus an n-by-n

cyclic matrix has n linearly independent eigenvectors. It only

remains to solve for them.

Lct C be a cyclic Tiat-ix and denote the nonzero element on

the ith row c,: C as cl1ti. Let X by an eigenvector of C

corresponding to eigenvalue X. Then by definition

"(•I - X Z 0, (63)

or, by the rules of matrix multiplication,

Xx -c x :01 i't t
Xx2 - =2,t2  0 (64)

2

Xx . c n,t xtn 0
n n

Now the coefficient matrix in (63) has rank n-1; hence, the

solution of the homogeneous system of linear equations con-

tdins a single arbitrary value. We set x : 1. Then,

S-- (65)
t C

and furthermore

xt1 (66)



To eliminate the staircase subscripts we denote the ith-fold

image of 1 as si. Then, in general, the xi are given by the

recursion relationsnip

Xs i =Xs- si_ X (67

whereXs x. ( ).

The subscripts s Gsl...Sn.1 define the "cyclic order"

of the cyclic matrix C. [Note that so0  1.] For instance,

tha cyclic order of the cyclic matrix( 0 003
1000
020/

is (1,4,2,3). Similarly, we define the "cyclic permutation"

corresponding to the cyclic matrix C to be

1,2.3, ...,nIc C lSlqES .

whose corresponding permutation matrix is Pc" Then finally.

0S)°Ido

n-d1

where he d ae give by th rcsini
wherethe re gven y th recu n.io

I
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d= d c i-l, 8 i ; i 1,...,n-i (69)

and d 1.

Letting D denote the diagonal matrix (dii), we can write

the eigenvector X corresponding to the eigenvalue X as

1in /

if X,12,...,n are the eigenvalues of C, then the transform

matrix ic given by

S P DA , (70)S

where

.0 0
1 2 n

A 2 A2  A2  1
1 2 n

An- 2~1  n-

Having treated the elgenvalues and eigenvectors of the

cyclic submat:'ices of the cyclic norm form of Section 6, we



endeavor to show that the remaining eigenvalues of the cYclic

Snormal form are all zero.
o Recall that the cyclic normal form of a square row-elemnen-

tal matrix of order n is

Ci/ 0 ... 0 0•
0oc...o

0 C2*"0 0

(72)l 0 i0 ..C °0
D1 DP... Dm G

where Cl,... are cyclic submatrices and the submatrix G
contains no cycles. For some positive integer r, the matrix

Gr is identically zero. This fact follows from the argument

that the elements of Gr given by the expression

S-. 2" 2 . krlj 3)

in which the elements of the summand form a chain of length

r. Since G contains no cycles such that the elements of.G

may De repeated in the summand, we can guarantee that G7 is

zero simply by making r greater than the order of G: This follows

fvom the fact that G is row elemental and therefore contains

"at amt r nonsero elements.

For ome power r of Q, say r equals the order of G, we can

then say

I -

' I I/J


